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I I. OVERVIEW .. -,..'" ,

I A. SUMMARY

The Arizona Center for Mathematical Sciences (ACMS) was begun in 1986 with support from

the Air Force Office of Scientific Research under the University Research Initiative Program. It is

housed on the eighth floor of the Gould-Simpson Building adjacent to the Mathematics Building and3 enjoys close ties with the Departments of Mathematics, Physics, Aerospace and Mechanical

Engineering, Optical Sciences and the Applied Mathematics Program at the University of Arizona.

The main goal of the research is to understand nonlinear processes in natural phenomena.

There is a strong emphasis on nonlinear optics, a subject which is relatively young and extremely rich

in scientific and technological potential. Turbulence in optics, the study of the complex space-time

patterns and defects which appear in feedback cavities and counterpropagating beams, is more

analytically tractable than its counterpart in fluids, and is currently attracting international attention.

It is the subject of our latest workshop.

There is little doubt that the Center has been enormously successful. The first rate regular

visitors (Zakharov, P6meau, Coullet, Rand, Firth, Moloney), the superhigh quality of recent

postdoctoral fellows (Passot, Liverani, Lega), the quality of the graduate students, the reputation of the

workshops, the interactions with AFWL at Kirtland and CNLS at Los Alamos, the productivity of the

faculty (over 200 publications since 1986), all attest to this success. We are extremely grateful to the

Air Force Office of Scientific Research who support the activities of the Center and hope they feel that

their confidence in us has been amply justified.I
B. MISSION

I The primary goal of the Center is to provide an environment for research and learning in the

Mathematical Sciences. Its basic research themes are the modelling, understanding and applicability of

I nonlinear processes in optics, fluids, neural networks, and random distributed systems with continuing

investigations into pattern dynamics, percolation, behavior of lattice gases, nonlinear stability, low

dimensional chaos, turbulence, dynamical systems and the nature of integrable systems of differential

equations. ,

The research takes place at three levels. First, there is the long-range, ongoing research

focusing on the themes listed above by permanent members of the faculty, colleagues with regular

visiting arrangements, postdoctoral fellows and graduate students. 1 Second, there are collaborations

I 1 ln contrast to the NSF Centers at Berkeley, Minnesota and Santa Barbara, this is our

I principal activity.

I
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2

with one-time visitors from other universities, national laboratories and Air Force research centers who

come for extended visits in connection with our special years' programs. Third, there is a regular series

of workshops (fifteen in the last three years) which (i) address areas which look to the future, and

which, in our judgment, are rich in promise and potential; (ii) have a pedagogic nature and are3 designed to communicate the importance and promise of several of the fields mentioned above to

undergraduate and potential graduate students and to other scientific colleagues; and (iii) are special

purpose and have a relatively narrow focus on topics of particular interest to Center faculty and

collaborators.

The learning takes place at all levels. The breadth of activity and spectrum of interest and

talent among visiting colleagues serves to stimulate interdisciplinary work and promote the cross

fertilization of ideas. Graduate students interested in applied mathematics enjoy a unique environment

in which they can experience first hand the unity in the approaches (modelling, simulation, analysis,

and involvement in experiments) with which mathematical scientists tackle a diverse set of problems

from all areas of the physical sciences. There are several ongoing weekly working seminars in addition

to regular departmental colloquia. These are in the areas of applied analysis, computation, dynamical

systems, nonlinear optics, neural networks, integrable systems, and mathematical physics. Finally, we

mention that we have had great success with our introductory workshops, the purpose of which is to

expose undergraduate seniors and potential graduate students to the exciting challenges of applied

mathematics.

3 In short, the support of the Air Force Office of Scientific Research under the University

Research Initiative Program has provided the Center with the flexibility, resources and the critical3 mass in the sub areas of concentration to satisfy an important criterion for a large scale research effort,

namely that the whole is greater than the sum of its parts.

I C. REASONS FOR SUCCESS

There are several factors, beyond the financial support, which have contributed to the Center's

success. The first is that there was already a strong core of high quality, highly active faculty members

whose research interests became the main themes of research in the Center. Second, there is a strong

university and departmental commitment to the applied areas. This support complements the support

provided by the Air Force. The Applied Mathematics Program at Arizona has existed for nearly3 fifteen years, enjoys an international reputation, is a source of excellent students, and provides the

framework for genuinely interdisciplinary interactions. The University made a commitment of twelve

new positions to the Department of Mathematics, including post-doctoral fellows, doubled the number

of teaching assistantships, provided funds for special years a year before the Center was inaugurated.1 The University also has provided space for the Center in a beautiful setting on the northern-facing side

I
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of the eighth floor of the Gould-Simpson Building. In fact, there are current plans to build a new

Mathematics-Physics building in which one whole floor will be devoted to Center-like activities. In3 addition, the Mathematics Department takes a particular pride in and has a continuing commitment to

its applied components. This makes Arizona somewhat unique. Third, with a combination of3 University and Air Force support, the Center was successful in building a first rate computational

environment, with easy access of permanent and visiting faculty to SUN and IRIS workstations, mini-

supercomputers (Convex 240), the CRAY-II at Kirtland Air Force Base and the CRAY-YMP at

Pittsburgh. A key factor in the computer environment is the presence of outstanding support

personnel. We have been most fortunate indeed in securing the services of Robert Indik, a Princeton

Ph.D. in Number Theory, who is not only a first rate software consultant but is also actively involved

in many Center projects, particularly in Optics. We also have an outstanding Computer Manager3 supported by the Mathematics Department, Bob Condon, who was principally responsible for setting

up our network.U
D. CENTER FACULTY AND STAFF3 Partial biographies of the various members are given in Section VI.

Director Alan C. Newell, Professor and Chairman, Dept. of Mathematics

Center Faculty Bruce Bayly, Assistant Professor, Mathematics
Moysey Brio, Assistant Professor, Mathematics
Kwok Chow, Assistant Professor, Mathematics
Nicholas Ercolani, Associate Professor, Mathematics
Hermann Flaschka, Professor, Mathematics
Brenton LeMesurier, Assistant Professor, Mathematics
David Levermore, Associate Professor, Mathematics
David McLaughlin, (currently at Princeton University)
Charles Newman, Professor, Mathematics (presently visiting Courant Institute)
Maciej Wojtkowski, Associate Professor, Mathematics
Lai-Sang Young, Associate Professor, Mathematics

3 External Faculty Who Spend Regular, Extended Periods at the Center

Pierre Coullet, University of Nice, France
William Firth, University of Strathclyde, Glasgow
Jerry Moloney, Heriot-Watt University, Edinburgh
Yves Pomeau, Ecole' Normale Superieure, Paris
David Rand, Warwick University, England
Sacha Rubenchik, Institute of Automation and Electrometry, Novosibirsk, USSR
Volodja Zakharov, Institute of Theoretical Physics, Moscow

5 Post-Doctoral Fellows and Visiting Faculty Closely Associated with the Center

Douglas Abraham, (Ph.D., 1968, King's College, Statistical Mechanics), 1987-1988, currently at Oxford
University

U
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I Alejandro Aceves, (Ph.D., 1988, University of Arizona, Nonlinear Optics), 1988-1989, currently at
University of New Mexico

Wayne Arter, (Ph.D., 1983, Trinity College, Cambridge, Computational Science), 1986-1987, currently
at Culham Lab (England)

David Barsky, (Ph.D., 1987, Rutgers University, Statistical Mechanics), 1988-1989, currently at
University of California at Davis

Andrew Bernoff, (Ph.D., 1985, Trinity College, Cambridge, Nonlinear Dynamics), 1988-1989, currently
at University of California at Berkeley

Jean-Guy Caputo, (Ph.D., 1986, University of Grenoble, Dynamical Systems), 1987-1988, currently at
Ins a de Rouen (France)

Martin Casdagli, (Ph.D., 1985, Warwick University, England, Dynamics), 1986-1987, currently at
Queen Mary College, London

Patrick Dunne, (Ph.D., 1987, M.I.T., Hydrodynamic Stability, Nonlinear Waves), 1987-1988, currently
at Ballinahown (Dublin)

Alecsander Dyachenko, (Ph.D., 1988, Moscow Phy Tech Inst, Physics), 1990-, from USSR Scientific
Council

G. R. Grimmett, (Ph.D., 1974, Mathematical Institute, Oxford, Probability), 1987-1988, currently
at University of Bristol (England)

Wanda Henry, (Ph.D., 1988, Australian National University - I.A.S., Optics), 1988-1989, currently at
King's College (Cambridge)

Joceline Lega (Ph.D., 1989, Universite de Nice, Physics), 1990-, from Lab de Phy Theor (France)
Liverani, Carlangelo (Ph.D., 1988, Rutgers University, Mathematics), 1990-, from Rutgers University
Alistair Mees, (Ph.D., 1973, Cambridge University, Dynamical Systems), 1987-1988, currently at

University of Western Australia
Edward Overman, II, (Ph.D., 1978, Ohio State University, Computational Science), 1986-1987,

currently at Ohio State University
Thierry Passot, (Ph.D., 1987, Observatoire de Nice, Turbulence, Painlevý Analysis), 1987-, from CNRS

(France)
Andrei Pushkarev, (Ph.D., 1988, Moscow Phy Tech Inst, Physics), 1990-, from USSR Scientific Council

on Complex Problems
Ron Sawatzky, (Ph.D., 1987, University of Alberta, Wave Propagation), 1987-1988, currently at

University of Alberta
Vadim Shvets, (Ph.D., 1980, Inst for Theor Phy, USSR, Physics), 1990-, from USSR Scientific Council

on Complex Problems
M'Hamed Souli, (Ph.D., 1984, Universite de Nice, Computational Science), 1988-1989, currently at

University of Grenoble
Wabnitz, Stefan, (Ph.D., Applied Physics,), 1990-, from Fondazione Ugo Bordoni (Italy)
Winful, H. G., 1990-, from University of Michigan
Henryk Zoladek, (Ph.D., 1983, Moscow State University, Bifurcation Theory), 1987-1988, currently at

Warsaw University

Center Staff Administrative Assistant: Mary Bollschweiler
Computer Software Specialist: Robert Indik
Computer Manager: Robert Condon

3 E. AREAS AND PROJECTS

Here we list the main areas of activity. Detailed descriptions of the projects are given in Part3 II, Areas of Current Research. We emphasize that there is much interplay and overlap between the

various projects.I
I
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I Nonlinear Optics

0 Turbulence, Defects, Spatial Patterns in Optics

0 Counter-Propagating Beam Instabilities in Bulk Media

* Counter-Propagating Beam Instabilities in Optical Fibers

* Dynamics of Free-Running and Injection-Locked Laser Diode Arrays

I Diffraction/Diffusion Mediated Instabilities in Self-focusing/Defocusing
Nonlinear Amplifying Media

3 Coupled-Wave Interactions in Extended Media

* Theoretical Study of Optical Phase Conjugation in Stimulated Brillouin Scattering

* Nonlinear Optical Switching at Multiple Interfaces

Turbulence and the Nature of Spatial-Temporal Complexity in PDE'S

* The Role of Collapse Structures in Nonlinear Physics

3 Coherence and Chaos in Near-Integrable PDE's

3 Local Inertial Manifolds

* Exactly Soluble Models for the Propagation of Oscillations

3 * Local Inertial Manifolds and Adaptive Basis Schemes for Dynamical Systems

* Turbulence, Hydrodynamic Stability Theory and Dynamics

I Turbulence in Compressible Flows and the Incompressible Limit of the
Navier-Stokes Equations

3 The Role of Defects in creating Strong Turbulence

* Three-Dimensional Euler Equations

* Analytical and Topological Studies of Singularity Formation in Euler Equations

3 Shear and Turbulent Convection

SFluids, Fronts, Stability and Transition

"* Convecting Patterns

3 * Nonlinear Dynamics

"* Large Scale Instabilities in Tri-dimensional Compressible FlowsI
1



I
I * Subgrid Scale Modeling in Two-Dimensional MHD Turbulence

i Caustics in Convection Patterns

0 Evolution of Localized States and Fronts in Non-Gradient Flow Systems

3 . Front Propagation

* The Theory of Compressible Fluids

I . Kinetic Theory of Fluids

i Laminar-Turbulent Transition

Computational Science

I * Phased Diode Laser Arrays

i * Coupled-Wave Interactions in Extended Nonlinear Optical Media

* Discontinuous Solutions of Hyperbolic Systems

3 * Lattice Gas Hydrodynamics

* Self Focusing Phenomena in LasersI
Integrable Systems and Geometry

3 * Gauge Field Constructions

0 Construction of Constant Mean Curvature Surfaces

I * Topological Classification of Integrable PDE

3 * Painleve Analysis of the Toda Lattice

* Momentum Mappings

3 . Nonlinear Poisson Structures

• Topology of Level Surfaces

Random Distributed Systems

3 * Exactly Soluble 3D Random Surface Model

* Ising Spin Systems

I
I
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U Dynamical Systems

3 . Hamiltonian Dynamical Systems

" Random Perturbations of Dynamical Systems

3 . Statistical Properties of Orbits Near Strange Attractors

3 F. WORKSHOPS

The Workshops have each focused attention on new challenges and stressed the connections

which exist between various mathematical sciences, connections which often are ignored but which

provide dividends when pursued. Examples are the fundamental role of nonlinearity in optics, the

interplay between the coherence of solitons and the scattering (Anderson localization) effects of

randomness, and the value in looking at numerical algorithms from the perspective of dynamical

systems.1
Numerical Solutions of Nonlinear Differential Equations, January 1987

3 - Random Schro dinger Equations, February 1987

State of the Art Developments in Nonlinear Optics, March 1987

3 Singularities in Nonlinear Partial Differential Equations, March 1988

- The Lagrangian Picture of Fluid Dynamics, October 1988

Space-Time Complexity in Nonlinear Optics, March 1990

I In addition, several special purpose workshops were held with colleagues from the Air Force

Weapons Laboratory at Kirtland Air Force Base and the Center for Nonlinear Studies at Los Alamos.1
Kirtland Air Force Base Workshop, December 1986, at Arizona

3 Kirtland Air Force Base Workshop, March 1988, at Kirtland

Kirtland Air Force Base Workshop, October 1988, at Arizona

Kirtland Air Force Base Workshop, October 1989, at Kirtland

3 Los Alamos Days Conference, October 1986, at Arizona

Los Alamos Days Conference, January 1988, at Los Alamos

3 Los Alamos Days Conference, February 1989, at Arizona

Los Alamos Days Conference, December 1989, at Los AlamosI
I
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I We have had four workshops for undergraduates.

i " I Annual Undergraduate Workshop in Nonlinear Science, March 1987

- II Annual Undergraduate Workshop in Nonlinear Science, March 1988

I- ll Annual Undergraduate Workshop in Nonlinear Science, March 1989

" IV Annual Undergraduate Workshop in Nonlinear Science, March 1990U
G. COLLABORATIONS WITH COLLEAGUES AT AFWL AT KIRTLAND

While there is mutual interest in several topics, the topic on which there is a specific focus at

present is the problem of stimulated Brillouin back scattering. This effort involves software

development for the study of stimulated Brillouin scattering (SBS) in nonlinear optical media. These

numerical schemes for solving the appropriate nonlinear partial differential equations will be extended

to include wide-angle beams, transient pulse effects with transverse self-focusing and pump depletion.

The software under development addresses the specific research interests of the laser theory group at3 AFWL; the objective of the research is to provide a portable and flexible computer code for their use.

A joint theoretical study of phase conjugation in SBS systems is also being carried out.

I
H. SPECIAL YEAR PROGRAMS

As part of its commitment to maintaining its leadership in algebra, nonlinear analysis, and

applied probability and to developing new strengths in computational science and geometry, the

Department has held a series of special year programs which are designed to bring to Arizona both

senior and junior visitors for extended visits.

I In Spring 1986, there were two programs, one on Algebraic Geometry with an emphasis on

Abelian varieties and another on Chaos and Turbulence. In 1986-87, our focus was on Computational

Mathematics. In Spring 1987, in collaboration with the Center for Complexity, the emphasis was on

Probability and Applications and brought together researchers interested in Statistical Mechanics,3 Image Processing, Random Media, Chaotic Dynamics and Probabilistic Number Theory. In 1989-90, a

special year in Biomathematics was held. Currently in Spring 1990, we have a special focus on the role

I of collapse structures in optics and plasmas.

I. THE TRAINING OF STUDENTS AND POSTDOCTORAL FELLOWS

A very important part of the Center mission is the training of graduate students and3 postdoctoral fellows. Since the beginning of the Center, it has supported 22 students and 19

I



9I postdoctoral associates. There are several key ways in which the Center has greatly improved the

learning enviornment. First, there is a critical mass of people (faculty, postdocs and students) in each3 of the areas of emphasis who meet on a regular basis in working seminars. Second, the constant stream

of first rate visiting colleagues serves as a continuing stimulus and exposes our students to a broad

I variety of challenges in the Mathematical Sciences. Moreover, students directly experience the parallel

transport of ideas from one area to another. This involvement in projects and discussion acts as a

catalyst to bring out the best in the student and to give him the widest possible exposure to all areas of

the Mathematical Sciences. Third, because we have been able to develop a first rate computer

environment (with advanced laboratory courses in computational science) and because our students are

exposed to experimental work by our colleagues in Optical Sciences and Aerospace and Mechanical

Engineering, our young people are taught the value of the interplay between the three modes of modern3 investigation, experiment, analysis and numerical simulation.

* J. THE FUTURE

The center has been funded for another three-year period beginning December 1989. We have3 established the research, computational and training environment to the point where the ACMS at

Arizona has become a very attractive place to work and learn. This reputation has led to the planned

extended visits of several outstanding mathematical scientists. Yves Pomeau will be a regular member

of the Center, spending at least three months a year here. Volodia Zakharov and Sacha Rubenchik

plan to bring several of their young colleagues to Arizona for the Spring 1990. We expect them to visit

again next year. William Firth, an optical scientist, will visit us on a regular basis. David Rand and

Jerry Moloney will continue their regular visits.

We also see the strengthening of the link with AFWL at Kirtland Air Force Base. There is

considerable overlap of research interests in nonlinear optics and tremendous benefits for both sides in

continuing the collaboration. We believe we have made substantial progress in cracking some of the

problems of mutual interest.

I In connection with the importance of computation, the Department has made the area of

Computational Science a top priority. This means that in addition to the many young people we have

here, we will be recruiting a first rate, senior scientist in this area.

With the continued support from the Air Force, the University and the Department, we believe

that ACMS has rapidly become one of the National Centers in the Mathematical Sciences.

I
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3 II. AREAS OF CURRENT RESEARCH

A. NONLINEAR OPTICS

(Moloney, Newell)

3 Turbulence, Defects and Spatial Patterns in Optics

The Center's activity in nonlinear optics has broadened significantly in scope over the past years.3 A key to this rapid growth has been our success in attracting leading researchers in optics worldwide

as active participants in the Center. The mix of senior and junior faculty, postdoctoral fellows and

graduate students coupled with the additional optics expertise input from our visitors, colleagues at the

Optical Sciences Center and at Kirtland AFB provides the critical base essential to carrying through

ambitious wide-ranging optics research activity. Among the long-term visitors who will play a key role in

future research activities are: W. J. Firth of Strathclyde University (counter-propagating beam induced

instabilities), S. Wabnitz of the Fondazione Ugo Berdoni, Rome (nonlinear optics), H. G. Winful of3 Michigan (laser diode arrays) and P. Coullet of Nice (patterns and optical vortices).

The workshop on "Space-Time Complexity in Nonlinear Optics" affords these and other leading3 figures in nonlinear optics and mathematics an opportunity for discussion and debate on current out-

standing problems and theoretical challenges at the forefront of modern optics. This workshop is a

follow-up to our highly successful one on "State of the Art Developments in Nonlinear Optics," held in

1987.

In addition to ongoing research projects, the Center's activity is migrating towards optics problems

wherein finite material response times play a critical role in inducing a variety of sideband instabilities.

Areas in which we anticipate that rapid progress will be made are (1) stability of phased diode laser3 arrays under free-running and injection-locking conditions, (2) self-defocusing induced instabilities lead-

ing to complex spatial pattern formation in nonlinear amplifying media, (3) counter propagating beam3 induced instabilities in passive and amplifying nonlinear optical media, and (4) bright/dark solitary

wave patterns induced on laser beams in optical feedback structures. These areas offer a rich class of

mathematically and computationally challenging research problems which will have a significant impact

on future developments within nonlinear optics as a whole.

5 A.1. Counter-Propagating Beam Instabilities in Bulk Media

(Firth, Indik, Moloney, Newell, Wright)

3 Sideband-induced instabilities associated with indirect nonlinear spatial gratings have been studied

at a preliminary level for counter-propagating infinite plane waves with finite material response at one3 extreme and for counter-propagating Gaussian (one transverse dimensional) beams in instantaneously

t References in text fall into two categories. One is the set of publications of the Center (Section VII). The other category

includes references to outside work relevant to the research. The latter are identified with an asterisk.

* 11
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responding nonlinear media (Firth) [1,2,3]. Both Indik and Wright (Optical Sciences Center) have been

working in collaboration with W. J. Firth (Strathclyde) on the one dimensional problem. A major

theoretical challenge arises when the full two dimensional (transverse) problem coupled with a finite

material response is considered. Both experimental (Gibbs at Optical Sciences Center and Boyd at

Rochester) and preliminary theoretical work show that counter-propagating beam induced instabilities

underpin complex nonlinear optical scattering processes. These scattering events can be associated with

the formation of a complicated induced spatial grating at one-half the wavelength of the standing wave

fields which, when mediated by a finite material response, can offer sufficient frequency bandwidth to

generate a whole hierarchy of higher order Stokes/Anti-Stokes shifted waves. This; area which offers many

exciting challenges in spatio-temporal complexity, will require a heavy commitment of computational

resources. Our existing time-dependent SBS code will form the basis for future computer modeling.

I References

3 1. W. J. Firth, "Theory of Optical Bistability and Optical Memory," preprint, May (1988).

2. W. J. Firth and C. Par6, "Transverse Modulational Instabilities for Counterpropagating Beams in

Kerr Media," Optics Letters 13 (12) December (1988).

3. C. Penman, W. J. Firth and C. Par6, "Transverse Modulational Instability of Counterpropagating5 Beams in a Kerr Medium Divided Into Thin Slices," preprint, (1989).

A.2. Counter-Propagating Beam Instabilities in Optical Fibers

(Aceves, Moloney, Wabnitz)

These complex dynamic interactions can be modeled and studied experimentally in optical fibers.

The latter are essentially the optical analogues of large aspect ratio systems making them more amenable

to analysis and computation. Both Aceves and Wabnitz have studied soliton structures in fibers with a

periodically modulated linear refractive index extending some earlier analysis of Winful. We are currently

investigating the role of group-velocity dispersion induced instabilities for counter-propagating fields.

SThis boundary value problem promises to be extremely rich mathematically, admitting whole new classes

of solutions, in addition to NLS type solitons. Experimental verification of our theoretical predictions will3 be possible through the experimental groups at Rome (Wabnitz) [1] and Heriot-Watt (R. G. Harrison).

Preliminary experimental results at Heriot-Watt show a broad class of regular and chaotic light pulsations

generated in the backward direction via stimulated Brillouin scattering. The origin of these instabilities

is not understood.

I
I
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Reference

*1. A. B. Aceves and S. Wabnitz, "Self-induced transparency solitons in nonlinear refractive periodic

media," Phys. Lett. A. 141 37 (1989).

A.3. Dynamics of Free-Running and Injection-Locked Laser Diode Arrays

(Indik, Jakobsen, Moloney)

3 This problem is based on a model of a phased array of diode lasers developed by Wang and Winful

[1,2]. We have extended the model to include the case of an array driven by an external laser. For the

case of no driving by external laser we have studied the stability of the well-known supermodes of the

array as a function of the number of elements in the array. This work has proven that such devices are

intrinsically unstable and grow more unstable as the number of elements increases.

* We then moved on to studying the case when the laser array was driven by an external laser in

addition to the current pumping. This was done in order to see if this driving could stabilize the array3 and thereby allow operation at higher field intensities. The supermodes were found to exist also in this

case and their stability was studied. The supermodes were found to be stabilized by the driving.

In addition to the supermodes, we quite unexpectedly found a new class of solutions to the laser array

model. These solutions are characterized by being potentially a much more powerful and useful solution

than the supermodes described above. It is particularly interesting to note that the total energy output

of these solutions increases as a fifth power of the number of lasing elements N in the array. This should

be compared to the linear growth as a function of N for the supermodes. The linear stability analyses3 was done numerically and the solutions were found to be linearly unstable. A closer investigation found

however, that the solution has a large strongly attracting manifold and a small and weakly repelling

unstable manifold. This means essentially that the solutions upon perturbation first quickly attract and

then on a much longer time scale go unstable. Extensive numerical simulations of the array have given

us a good understanding of its long-time behavior. There is a new solution that seems to be attracting

all initial states. This solution has the same fifth power dependence on N as the solution just described

but has in addition, a certain essentially time independent phase profile. This phase profile makes the

solution less useful for applications but fifth power dependence on N is intriguing. We are now in the

process of trying to understand the nature of the instability better in order to be able to control it.3 Pittsburgh Supercomputing Center (PSC) resources are an indispensable part of this work and we

are very grateful for their support [3].

I References

*1. S. S. Wang and H. G. Winful, "Stability and Phase Locking in Coupled Semiconductor Laser

Arrays," preprint (1988).
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3 *2. S. S. Wang and H. G. Winful, Appl. Phys. Lett. 52 1774 (1988).

*3. E. 3. Doedel, AUTO User Manual, Version September 1984.I
A.4. Diffraction/Diffusion Mediated Instabilities in Self-focusing/Defocusing Nonlinear

Amplifying Media

(Indik, Jakobsen, Moloney, Newell)

Diffraction of light and diffusion of the nonlinear excitation have been known for some time to

profoundly influence the nonlinear response of passive optical feedback systems [1]. Transverse spatio-

temporal instabilities in nonlinear amplifying media when mediated by diffraction and diffusion processes,

form the basis for investigating the dynamics of broad stripe semiconductor lasers. Such lasers suffer

the inevitable problem of multi-transverse mode instabilities which are further complicated by carrier

diffusion within the wide -ain region. Our preliminary analysis of the model describing this problem

has led to the identification of new classes of transverse standing/traveling wave instabilities under

both self-focusing and self-defocusing conditions. The latter instabilities exist only in the presence of

a finite material response. Diffusion can shift instability bands in k-space or remove them altogether.

We show moreover that the adiabatic elimination of the polarization variable from the Maxwell-Bloch

equations significantly alters the nature of the instability growth curve. Future work will involve gaining

an understanding of the self-defocusing traveling wave instability and extending our computation and

analysis to the investigation of chaotic pattern dynamics in two dimensions.

* Reference

*1. L. A. Lugiato, L. M. Narducci and C. Oldano, "Cooperative frequency locking and stationary3 spatial structures in lasers," J. Opt. Soc. Am. B 5 No. 5, May (1988).

A.5. Coupled-Wave Interactions in Extended Media

(Indik, McLaughlin, Moloney, Newell)

This project is aimed at developing a suite of computer codes capable of solving a variety of problems

involving the interaction of two or more laser beams in extended media. The main focus of the problem

has been the development of a time dependent three dimensional code to handle the complicated problem

of backward Stimulated Brillouin Scattering (SBS). This code is running well at this time. We are now

extending the code to include a third, acoustic field in the simulation, and improving the efficiency of

the code by modifications to the algorithm.

This code is currently being used to test the models for SBS that seem to offer a possibility of

explaining the Optical phase conjugation effects that have been observed. We have been limiting most

of the use of this code to two dimensional problems to conserve computer resources.

I
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We have continued our efforts to improve the efficiency of the code that we use to solve the SBS

problem and other counter-propagating beam problems. We are incorporating suggestions from J. Hy-

man (Los Alamos National Laboratory) into the code to take advantage of an improved trapezoid rule

algorithm as well as a scheme to increase the size of the propagation step we can use in our split step

algorithms by integrating the equations for the first time derivative of our propagation equations. This

should allow us the take advantage of the fact that the systems we are studying tend to converge to a

nearly steady state after the initial transient behaviors have passed. The algorithms more typically used,

do not allow one to take advantage of this behavior, since the individual steps of the split step are not

at rest.

As before, all code is fully vectorized and we are testing codes on the Cray-2 at Kirtland. As mentioned

above, we are also modifying the code to include the material response.

A.5.a. Theoretical Study of Optical Phase Conjugation in Stimulated Brillouin Scattering

(Indik, McLaughlin, Newell)

As part of our study of the phenomena associated with Stimulated Brillouin Scattering, we have

been doing some analytical explorations to try to understand how optical phase conjugation arises. We

have taken the work of Hu et al. [1] and tried to reformulate it in such a way that we can understand

when the model they derive will apply, and estimate the error terms arising from the simplifications

in that model. In [1), a k-space analyses of the steady state equations describing stimulated Brillouin

scattering is used in which terms that are not phase matched are ignored, and a certain additional term

is inserted. Once these simplifications have been made, the authors show that the new equations can be

reduced to a set of four ode's (from the original two pde's), which have coefficients that depend on the

boundary conditions of the original problem. Once the reduction to-ode's has been made, the problem

of numerically integrating the SBS problem is vastly simplified. We have reformulated the results of the

k-space analyses into equations in the original space variables which involve some transverse integrals.

It is clear on inspecting these equations why the phase conjugation effect should arise. Moreover, from

this form of the equations, we have been able to reduce the problem to a system of two ode's in physical

quantities (reflectivity and fidelity) that are measured in the experiments.

We are currently engaged in the attempt to derive the above-mentioned pde's involving transverse

integrals from the original equations, keeping good control of the errors and requirements for the various

estimates. It is our hope that we will be able to derive these equations rigorously, and be able to predict

in what regimes they will apply, and therefore, under what conditions optical phase conjugation can be

expected to arise in Stimulated Brillouin Scattering [2,3,4].

References
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Brillouin Scattering", J. Opt. Soc. Am. B 6, 10 (1989).

*2. L. P. Schelonka, "Phase Conjugate Fidelity of Focused Stimulated Brillouin Scattering," Final

Report of Air Force Weapons Laboratory, Kirtland Air Force Base, New Mexico, AFWL-TR-88-57

August (1988).

*3. L. P. Schelonka and C. M. Clayton, "Effect of Focal Intensity on Stimulated-Brillouin-Scattering

Reflectivity and Fidelity," Optics Letters 13 42, January (1988).

*4. B. Ya. Zel'dovich, N. F. Pilipetsky and V. V. Shkunov, "Principles of Phase Conjugation," Chapter

2, Springer-Verlag, Berlin (1985).

A.6. Nonlinear Optical Switching at Multiple Interfaces

(Aceves, Adachihara, Moloney, Newell, Varatharajah, Wright)

This highly successful ongoing project, catalyzed by our equivalent particle theory, has naturally

evolved to include material diffusion, finite material response and pulsed spatial switching in multi-

layered nonlinear wave guiding media. Recent experiments by a Bell Labs group have demonstrated the

existence of spatial solitons propagating as 75 femto-second pulses in slabs of doped glass. This affords

the experimental possibility of realizing the many nonlinear optical switching effects predicted by our

equivalent particle theory. The extension of the theory to include nonlocal effects in space (diffusion) and

time (retardation) as well as square and Gaussian pulse (in time) switching has allowed us to quantify

various pulse stripping effects in single interfaces, directional coupler and Mach-Zehnder interferometer

structures. Toward this end the equivalent particle theory has proved to be an invaluable design tool.

* References

1. A. B. Aceves, J. V. Moloney and A. C. Newell, J. Opt. Soc. Am. B 5, 559 (1988); Phys. Lett. A1 129, 231 (1988); Phys. Rev. A., 39 1809 (1989); 39 1828 (1989).

2. P. Varatharajah, A. C. Newell, J. V. Moloney and A. B. Aceves, "Transmission, reflection and

trapping of collimated light beams in diffusive Kerr-like nonlinear media," to be published in

Phys. Rev. A.

3. P. Varatharajah, A. B. Aceves, J. V. Moloney, D. R. Heatley and E. M. Wright, Opt. Lett. 13 690

(1988).

4. P. Varatharajah, A. B. Aceves, J. V. Moloney and E. M. Wright, to appear in J. Opt. Soc. Am.

B, February 1990.I
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3 A.7. Externally Encoded and Spontaneous Pattern Formation in a Nonlinear Optical Ring

Cavity

(Adachihara, Lizarraga, Moloney, McLaughlin, Newell, Wenden)

Our ongoing research activity in this area has now evolved to a careful study of the underlying

mechanism for complex pattern evolution across the two dimensional transverse cross-section of a laser

beam circulating in a ring cavity. We are comparing a mean-field model with the full infinite dimensional3 map and our preliminary results with the former suggest that many of the dynaii.ic features are essentially

identical. This is extremely encouraging as the mean field model is essentially a two dimensional-HLS

type problem with external forcing and damping, and this should be amenable to a detailed analytic

study. The outstanding questions that remain are to understand the saturated filament interaction

leading to collapse and the modulational instability of flat-topped solitary wave states. We are currently3investigating the role of filament density in establishing complexity of the underlying patterns. The

problem has been extended to include finite material response in one dimension. Work is currently

underway on the linear stability analysis of the delay-differential problem describing the finite material

response case. Numerical simulations suggest that the solitary wave structures are extremely robust to

delay effects and indeed promise an even richer spatio-temporal pattern evolution.

Dark solitary waves can be encoded across the switched-on portion of the beam for self-defocusing

nonlinearities. This is achieved by encoding a phase modulation across the external pump beam. The3 hard edge provided by the bistable response of the ring cavity provides a natural aperture with which to

confine the defocusing beam. The dark furrows encoded across the beam can be removed and rewritten

by adjusting the phase modulation on the pump. One interesting preliminary observation is that the

so called gray solitons of the NLS problem, which must have finite transverse velocities, acquires zero3 velocity under external pumping and dissipation.
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3 B. TURBULENCE AND THE NATURE OF SPATIO-TEMPORAL COMPLEXITY IN

PDE'S

(Bayly, Ercolani, Levermore, McLaughlin, Newell, Passot, Pomeau, Rand, Rubenchik, Za-

kharov)

3 Unstable solutions, traditionally dismissed because they are not directly observable, can actually play

a fundamental role in organizing the phase space of dynamical systems. The importance of this role has3 been realized in the theory of finite dimensional systems for some time. For example, orbits homoclinic

to unstable fixed points can be used to establish the existence of irregular temporal behavior through the

construction of a "horseshoe." However, the role of unstable solutions for pde's is just beginning to be

appreciated. For pde's, an instability of a particular spatial pattern can produce more complex spatial

structures. This production process can continue, generating even more interesting spatial structures3 and lead to the onset of both spatial and temporal turbulence. Even more dramatic is the role of

singularities and collapse structures of the "Euler" (nonviscous) part of the governing equations because3 these structures can dominate transport properties in both real and wavenumber space.

We now describe some of these projects individually, attributing each to those scientists doing most

of the work. We do emphasize that each project is but one part of the entire body of work, which

is continually being discussed in its entirety throughout our Center. Each project benefits immensely

from this open interactive environment and from scientific input from a variety of sources. Certainly

visitors to the Center have played, and will continue to play, an important role. For example, in the area

of instabilities and singularities, we mention in particular Volodja Zakharov, Sacha Rubenchik, David3 Rand, Yves Pomeau, Ed Overman and Pierre Coullet.

References to works completed under Center support are listed at the end of each subsection. For3 brevity's sake, in this report we do not list the vast number of important contributions made by other

colleagues. These are fully documented in the published works.

I B.1. The Role of Collapse Structures in Nonlinear Physics

(Zakharov, Newell, Shvets, Dyachenko, Pushkarev, Indik, Jacobsen)

I In 1972, Zakharov suggested that the transport of energy from large scales to small dissipative scales

in plasmas (at which the wave energy is converted into heat energy bf electrons) was due to singular or

collapse events rather than four wave mixing processes. Since that time, this idea has gained credence

and is now quite generally accepted. Although most of the theoretical work has been carried out on3 model equations (the Zakharov equations, the vector and scalar nonlinear Schrbdinger equations), recent

numerical experiments on the full set of governing kinetic equations has verified the dominance of the

collapse events.

We are presently carrying out a series of numerical experiments to simulate turbulent solutions of

I
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5 the NLS equation:

iot + V20 + I40r¢ = ¢'*e- 2 Xt + ieflP10I"' + iC27?k

5 in the case where the product sd (s is the order of the nonlinearity, d the dimension) is greater than or

equal to 4. The goal is to verify with care the idea that the transfer of energy through k space and/or5 the dissipation rate is controlled by the collapse events [1,2,3,4,5,6].

Specifically we will first check two theoretical predictions.

3 1. In the limit of small linear damping, collapse is the leading mechanism of energy dissipation.

2. The asymptotic properties of the pair correlation function are determined by the local structure

5 near collapse points.

Confirming or rejecting these will be very significant for the theory of strong turbulence in optics

and in plasmas. One of our goals is to verify the role of superstrong collapse, namely the creation of hot

spots or black holes which remain turned on until they literally suck All available energy out of the field.

These objects are theoretically possible in an optical context in which the medium is self-focusing and

three dimensional with anomolous dispersion in the direction of wave propagation.
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B.2. Coherence and Chaos in Near-Integrable PDE's

(Ercolani, McLaughlin, Schober, Roitner)

Near integrable nonlinear wave equations are excellent prototypes for the study of chaotic attractors

for partial differential equations (pde's), particulary when these attractors exhibit both spatial coherence3 and temporal chaos. Our studies are the first in pde's to express explicitly homoclinic orbits with rich

spa-;ial and temporal behavior, to provide a complete classification of the homoclinic manifolds for

an iutegrable nonlinear wave equation, and to identify numerically the presence of these homoclinic

structures in the chaotic attractor of a nearby perturbed wave equation. These homoclinic solutions

reside on a "boundary" between types of waves with distinct spatial characteristics in that, in each

neighborhood of a homoclinic orbit, there exist solutions of two distinct spatial types, for example,

extended nonlinear photons and localized solitary waves. Our studies suggest that these homocinic3 manifolds play fundamental roles both in the saturation of instabilities by the generation of increasingly

complicated spatial structures and as sources of sensitivity which produce chaos in near integrable pde's.3 A more explicit description of our results follows.

Numerical studies [1] of the damped driven sine-Gordon equation have identified rich phenomena

in its low dimensional chaotic attractors including the presence of simple localized spatial (breather)

excitations, the generation of more complicated spatial structures, and a competition between these

spatial patterns which results in an intermittent, chaotic evolution. Theoretical studies [2] of the nearby

integrable sine-Gordon equation have identified exact solutions with nontrivial spatial and temporal

structures which are unstable toward solutions with still more complicated structure. These instabilities3 are in one-to-one correspondence with homoclinic manifolds of the completely integrable pde.

Direct numerical measurements [3] using the inverse spectral transform have established that, as the

phase point evolves along a chaotic attractor, these homoclinic manifolds of the nearby integrable sine

Gordon equation are frequently (and apparently irregularly) crossed. Thus, these studies have produced

natural candidates for sources of chaos. Further theoretical studies [4] have constructed exact solutions

of the driven damped sine-Gordon equation. Theoretical stability considerations classify these solutions

as (i) stable, (ii) metastable (low dimensional unstable manifolds with small - O(C), where f is the3 perturbation parameter - growth rates), and (iii) unstable - with large O(1) growth rates. The unstable

states arise from deformations of those exact sine-Gordon solutions which are unstable in the absence3 of external perturbations, and, typically, they have simple spatial structure. The simplest such unstable

state is x independent and is unstable to long wavelength perturbations (the classical Benjamin-Feir1 instability). The stable states tend to have a richer spatial structure. For example, one such state results

from the deformation of a sine-Gordon breather whose temporal frequency is that of the driver. As

the stress is increased, this stable spatially localized state becomes metastable, with a two dimensional

unstable manifold and small - 0(c) - growth rates. A substantial second harmonic (cos2kx) is present

in the unstable manifold [4].
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The next theoretical step begins by viewing the chaotic attractor as predominantly composed of

metastable states and homoclinic structures. The pde phase point will hover near one metastable state,

slowly leave its neighborhood along and unstable direction, approach an unstable state along its stable

manifold, rapidly fly past this unstable state, approach another metastable state, etc. This hovering

near a metastable state, followed by flying rapidly past an unstable state toward another metastable

state, describes the motion on the chaotic attractor. Several approaches can now be used to convert

this picture into a mathematical description of the attractor for the pde. Currently, we are developing3vlelnikov calculations for pde's which are based on these homoclinic orbits [5], seeking low dimensioned

approximate representations of the dynamics [6,7], and constructing an intuitive stochastic model of the3 chaotic motion. Recent work on Melnikov methods for near-integrable pde's is in collaboration with S.

Wiggins (California Institute of Technology).3 Very recent developments are:

B.2.a. Local Inertial Manifolds

(Ercolani, McLaughlin, Roitner)

With Arizona graduate student Heinz Roitner, Ercolani and McLaughlin have shown that for one

dimensional periodic Schr6dinger operators, the L2-distance between potentials and the corresponding

gap distance associated to the inverse spectral transform are not globally equivalent. However, they3 are equivalent on any bounded set in L2 . This work has been submitted to the Journal of Differential

Equations.3 We are applying this result to the analysis of a Kuramoto-Sivasinsky perturbation of KdV whose

goal is to illustrate the construction of local inertial manifolds for nearly conservative PDE.

3 B.2.b. Exactly Solvable Models for the Propagation of Oscillations

(Ercolani, Wright)

I With a graduate student, Otis Wright, Ercolani has shown how to explicitly solve the KdV modulation

equations. This is being used to construct the non-local realization of the Young measure for the zero-

3 dispersion limit of KdV.
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B.3. Local Inertial Manifolds and Adaptive Basis Schemes for Dynamical Systems

(Broomhead, Indik, Newell, Rand)

We have suggested recently and developed a method for following the dynamics of systems whose

long-time behavior is confined to an attractor or invariant manifold A of potentially large dimension.3 The idea is to embed A in a set of local coverings. The dynamics of the phase point P on A in each

local ball is then approximated by the dynamics of its projections into the local tangent space. Optimal

coordinates in each local patch are chosen by a local version of a singular value decomposition (SVD)

analysis which picks out the principal axes of inertia of a data set. Because the basis is continually

updated, it is natural to call the procedure an adaptive basis method. The advantages of the method are:

(i) The choice of the local coordinate system in the local tangent space of A is dictated by the dynamics

of the system being investigated and can therefore reflect the importance of natural nonlinear structures3 which occur locally but which could not be used as part of a global basis. (ii) The number of important

or active local degrees of freedom is clearly defined '0y the algorithm and will usually be much lower3 than the number of coordinates in the local embedding space and certainly considerably fewer than the

number which would be required to provide a global embedding of A. (iii) While the local coordinates

indicate which nonlinear structures are important there, the transition matrices which glue the coordinate

patches together carry information about the global geometry of A. (iv) The method also suggests a

useful algorithm for the numerical integration of complicated spatially-extended equation systems, by

first using crude integration schemes to generate data from which optimal local and sometimes global

Galerkin bases are chosen.

I Reference

3 1. D. S. Broomhead, R. Indik, A. C. Newell and D. A. Rand, "Local Adaptive Galerkin Bases for

Large Dimensional Dynamical Systems." To be published in Nonlinearity (1990).

3 B.4. Turbulence, Hydrodynamic Stability Theory, and Dynamos

(Bayly)

I Research over the last decade has elucidated the basic mechanisms operating in the initial stages

of turbulent transition in shear flows. The currently accepted picture is that the initial instability of a3 unidirectional (or otherwise essentially one-dimensional) flow is a two-dimensional wave of rather par-

ticular structure and scale. If no other disturbances are introduced, the wave typically equilibrates in3 a finite-amplitude two-dimensional structure. This wave flow is generally unstable to three-dimensional

instabilities. The three-dimensional secondary instabilities occur on a wide range of length scales, in con-

trast to the primary two-dimensional instability. Full numerical simulations indicate that the secondary

instabilities do not equilibrate but develop into fully turbulent shear flow.

3
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The two-year report (Spring 1989) discussed the problem of instabilities in time-dependent flows

containing finite-amplitude waves. The immediate precursor of this work was Patera and Amon's [1]

study of flows in grooved channels, which was intended to model heat transfer above integrated-circuit

boards. This work began by isolating the time-dependent elliptical vortex at the center of a travelling

primary-instability wave. While apparently a simple generalization of the steady elliptical flow problem,

this problem requires much more sophisticated mathematical machinery. The pulsating ellipse problem

turned out to be isomorphic to the spectral theory of a quasi-periodic Schr6dinger operator. Exploiting3 recent advances in the Schr6dinger spectral theory, largely due to Johnson and Moser (e.g. [2]), we have

been able to characterize the nature of the unstable modes and even verify the theory by numerical3 simulation. This work is in preparation.

A necessary part of the broadband instability theory is to develop some kind of nonlinear theory

for the interaction of modes on different scales. Very little work has been done in this area. A suitable

framework is gradually developing in which to examine various effects. These include weak nonlinearity,

modes in confined geometries, and homogeneous but non-isotropic turbulence driven by modes in a3 particular cone in wavenumber space. This problem is still in preliminary stages.

Dynamo theory refers to the effort to understand the origins of the Earth's magnetic field, and that

Sof the Sun and other large astrophysical bodies. The magnetic field in a highly conducting fluid obeys an

equation identical in form to the vorticity in a high Reynolds number flow, or the equation representing3 stretching of a field of material line elements embedded in the fluid. Since Lagrangian chaos in a flowfield

results in material line elements being stretched exponentially fast, there is likely to be a close connection

between Lagrangian-chaotic flows and flows supporting robust magnetic field amplification.

The highly-conducting dynamo problem has been studied for several years now, in collaboration with

S. Childress of the Courant Institute. We have demonstrated that simple chaotic flows are capable of

fast dynamo action, and that such behavior persists in more general flows. Comprehensive investigations

of dynamo action in nontrivial three-dimensional flows are being undertaken by Bayly in collaboration3with S. Childress and R. B. Pelz (Rutgers). Pelz and Bayly are beginning a massive computational study

of magnetic field generation on a HYPERCUBE parallel processor, whose architecture allows numerical3 investigations to be pursued at much higher resolution than has been possible on previous machines.

Such computations will also be implemented on the Connection Machine parallel processor.

Bayly's work with Childress concentrates on deterministic models. A. Gilbert (of Cambridge, England

and Nice, France) and Bayly have just completed a study of dynamo action in completely random flows.

Developing an idea from work of Dittrich et al. [3], we investigated an extremely simple class of random

flows that exhibit a wide range of interesting effects. In particular, our work has greatly simplified much

of the confusion regarding the role of non-reflection-invariance in magnetic field generation.3 Very recently, Bayly has made some theoretical progress on relating the numerical computations with

the mathematical problem in the singular limit of infinite conductivity. The singular limit precludes anyI
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5direct connection with finite resolution simulations. However, it may be observed that the operations

of numerical discretization and physical evolution almost commute, in a certain sense. This almost-

commutation provides a mechanism for estimating the differences between the numerics and the true

problem that is unnattainable otherwise. This approach, which appears to be new, offers promise for

numerical attacks on other singular operators arising in fluid dynamics and dynamical systems.

A new project involving magnetism and fluid dynamics is in its early stages. Bayly is collaborating

with W. Tam of the Physics Department on the dynamics of ferromagnetic fluids in oscillating magnetic3 fields. Such fluids are already used in technological applications, but their basic dynamics have been

relatively lightly studied. The current investigation of nonlinear oscillations in a confined geometry is

one of the first studies of a truly time-dependent ferrofluid phenomenon.
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B.5. Turbulence in Compressible Flows and the Incompressible Limit of the Navier-Stokes

3 Equations

(Bayly, Jokipii,Levermore, Passot)

I In this work (in collaboration with B. Bayly, J. Jokipii, D. Levermore and T. Passot), our interest

has been focused on the study of different flow regimes of the compressible Navier-Stokes equation in3 the small Mach number limit [1]. The motivation is to provide a possible explanation to the observation

made in the interstellar medium of the density fluctuations spectrum. This latter obeys a Kolmogorov-

type scaling law (< 6p6p' >= k- 5 I') over a large number of decades; this cannot be understood if it is

assumed that the flow is in the "usual" quasi-incompressible regime where the density fluctuations are

correlated to the pressure fluctuations which themselves scale as k-7 /. We show on the contrary that,

without invoking the influence of magnetic fields, it is possible to interpret the observed scaling law when

another type of quasi-incompressible limit is reached where the density acts, at the dominant order, as

a passively advected quantity. The entropy fluctuations play a dominant role in allowing a Boussinesq-

type of equilibrium between the temperature fluctuations and the density fluctuations which then can3 be of a larger order of magnitude compared to the Mach number M, than in the usual incompressible

limit where A - M 2 . We have used a direct numerical integration of the two-dimensional compressible!p
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3 Navier-Stokes equations with a perfect gas equation of state to study the generation and the stability

of such regimes with different types of forcing. It has been shown that a spatio-temporal distribution of

heating and cooling provides an efficient and natural way of settling the fluid into such regimes (as also

would a forcing provided by boundary conditions as in the Rayleigh-B1nard experiment).

3 Reference

1. B. Bayly, J. Jokipii, D. Levermore and T. Passot, "Density Variations in Almost Incompressible3 Turbulent Flows", in preparation.

3 B.6. The Role of Defects in Creating Strong Turbulence

(Coullet, Lega)

3 A two dimensional pattern may be described by means of an order parameter, which measures the

quantity of order in this structure. Defects are objects which break this order, and are, in that sense,

elements of disorder. For instance, elementary defects of a two dimensional structure are points where the

order parameter vanishes. Such objects appear in general because of initial conditions or edges, but they

become fully interesting for the disorganization of the system as soon as they are produced spontaneously.

We have shown in a previous work that a large scale instability of a two dimensional spatially extended

pattern eventually leads to the creation of defects [1,2,3]. Because of their motion, the latter are then3 responsible for a loss of correlations in the system. The resulting state, which is a first stage on the

way to disorder, has been termed defect-mediated turbulence. We have also shown that further away3 from the instability threshold, defect-mediated turbulence merges into amplitude turbulence, which is

characterized by a large number of excited amplitude modes for the order parameter. The structure is

then completely broken, and the field possesses numerous zeroes, which are reminiscent of defects in

defect-mediated turbulence. In this limit, the dynamics of the order parameter can be related to that

given by the two dimensional nonlinear Schrodinger equation, which is known to produce self-focusing in

the considered regime of parameters. Hence, taking account of the presence of defects in the field could

be a way of understanding strong turbulence.
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3 B.7. Three Dimensional Euler Equations

(Ercolani, Siggia)

With E. Siggia (Cornell University), Ercolani has recently determined the topological obstructions

to the existence of global Clebsch variables for the three dimensional Euler equations. They are studying3 a Lagrangian formulation of Euler in these variables to analytically assess the possibility of singularity

formation.

I B.8. Analytical and Topological Studies of Singularity Formation in Euler's Equation

(Ercolani, Caflisch)

1 With R. Caflisch (UCLA), Ercolani has characterized the analytic structure of spatial singularities in

a hyperbolic system with multi-valued initial data. The latter is a local model for singularity formation in

the roll-up of a vortex sheet. They are currently extending their analysis to the non-local Birkhoff-Rott

equation.

B.9. Shear and Turbulent Convection

3 (Zaleski)

S. Zaleski (with Levermore) is working on lattice gas methods for the simulation of hydrodynam-3 ics. He has proposed a lattice gas method for studying liquid-gas mixtures. Zaleski is also working on

turbulent thermal convection. This involves theoretical work on the stability of boundary layers in ther-

mal convection experiments, such as recent experiments at very high Rayleigh numbers performed in

Chicago. These experiments yield several unexpected scaling laws. In particular the measured heat flux

is much lower than predicted by simple theories. This may be explained by a similarity theory. Another

tool for the study of thermal turbulence are numerical simulations of sheared boundary layers. These

numerical simulations allow to reproduce in part characteristic effects in very high Rayleigh number3 experiments, such as the relative lowering of the heat flux with respect to marginal stability theory.

I
i
I

I
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3 C. FLUIDS, FRONTS, STABILITY AND TRANSITION

(Chow, Levermore, Newell, Passot, Pomeau, Souli)

3 C.1. Convection Patterns

(Newell, Passot, Souli)

I In a major breakthrough, we have derived and studied the phase and mean drift equations which

describe the behavior of a convection pattern in large aspect-ratio containers [1,2,3]. The patterns typi-3 cally consist of patches of slightly curved rolls separated by defects such as dislocations, grain boundaries

and disclinations. We developed a macroscopic description of these patterns by averaging the Oberbeck-3 Boussinesq equations over the locally almost periodic structures using a method modelled on the ideas of

Whitham who derived an analogue of the geometric optic for fully non-linear waves. The equations are

derived arbitrarily far from onset and for any Prandtl number. The computation of the coefficients of the

phase equation (which are functions of the Rayleigh number, the Prandtl number and the wavenumber)

needed the construction of a complex algorithm and the utilization of tools new to this field.

Let us first briefly describe the steps involved in this derivation. As a starting point, we need to

calculate for a given Rayleigh and Prandtl number, a fully nonlinear straight parallel roll solution of3 the Oberbeck-Boussinesq equations, and this for a set of values of the wavenumber k spanning the

interval contained inside the marginal stability curve. This is done by using a Newton's method to3 solve algebraic equations obtained after projecting the PDE on a suitable truncated Galerkin basis. The

solutions obtained are then interpolated in terms of k using cubic spline polynomials. Since the large-scale

equations we are looking for are obtained as compatibility conditions in a multiple-scale expansion, the

next step is to calcultate the linear operator obtained by linearizing the Oberbeck-Boussinesq equations

around the straight roll solution. A major difficulty in this problem comes from the fact that the mean3 drift equation is obtained at the second order in the expansion. This necessitates the complete calculation

of the first iterate, retaining in algebraic form its dependence on the wavevector k. But since the linear3 operator is singular, we had to use a very robust method to evaluate the pseudo-inverse. We found out

that a singular value decomposition is ideally suited for our purposes and that it also saves appreciable

computer time. We had only to pay further attention to poor conditioning of the matrix in some cases.

As a first step, two kind of analysis were performed on this equation. The first one is a linearization

around straight parallel rolls. It provided the borders of the nonlinear stability region that we found

in exact agreement with the one of the Busse balloon concerning the long wavelength instabilities. The

second one concerns the stability of target patterns. Because of the influence of sidewall boundaries,3 patches of circular rolls tend indeed to be the dominant pattern convection. The analysis of this simple

model of circular rolls gives a natural way to calculate the selected wavenumber (which agrees closely3 with experiments) and gives rise to a new instability which appears to be important in initiating time

dependence. We also predicted the Rayleigh numbers at which loss of spatial correlation due to global

I



U
31

3 defect nucleation will occur.

We are now investigating a generalization of this equation in order to describe defect nucleation.3 The equation obtained in [1] has the advantage of possibly describing a pattern of rolls pointing in any

direction but has the drawback of losing its regularity when the wavenumber k exceeds by too much the

boundary of the non-linear stability region. (This has been verified by direct numerical simulation of the

nonlinear development of a skewed varicose instability.) A Ginzburg-Landau (or Newell-Whitehead) type

of equation, which governs only the evolution of perturbations around straight parallel rolls, has however

the property that it correctly describes the formation of defects. Our goal is to combine advantages of

both formulations.1 When the Rayleigh number is too high, we are left with a phase dynamics; the amplitude A of the

rolls is indeed algebraically saved to the wavenumber k. This is wrong when A becomes small. The

analysis must then be modified, and leads to two coupled partial differential equations for e and A.

These equations are able to describe the formation of defects; they still posess singularities, but they are

removable by a change of unknown: w = A exp(iE). A matching between both descriptions has to be

done if A is of order one or smaller.

The method is currently tested on simpler model equations for which the analysis is very simple3 but which contain all the ingredients of real problems, namely the Ginzburg-Landau equation. We are

interested at describing the nucleation of a pair of dislocations when two-dimensional perturbations are3 superimposed on an Eckhaus unstable pattern.
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3 C.2. Nonlinear Dynamo

(De Young, Durney, Passot)

3 We studied the possiblity for the solar magnetic field to be generated in regions of weak buoyancy. Use

has been made of numericdl simulations of the EDQNM closure of the incompressible MHD equations,3 paying particular attention to the long time behaviour. In particular we were interested in the nonlinear

saturation of the alpha effect. The main result was to prove that a solar dynamo located at the bottom

of the convective region is indeed efficient to provide a magnetic field of the strength required by the

observations, avoiding in the same way a lot of difficulties encountered when one trys to locate the

generating region in the middle of the convective zone.

Reference

3 1. B. Durney, D. S. De Young and T. Passot: "On the generation of the solar magnetic field in a

region of weak buoyancy", submitted to Astrophys. J.

I C.3. Large Scale Instabilities in Tridimensional Compressible Flows

(Passot, Pouquet, Sulem)

It is known [2] that for a three-dimensional incompressible fluid, a large-scale perturbation superim-

posed on an anisotropic small-scale flow will be unstable if the basic flow lacks parity invariance and

if the Galilean invariance is broken (either by the forcing mechanism or the boundaries). It had been

proposed that in the case of a compressible flow, the assumption of anisotropy can be relaxed, and that3 the large-scale flow is subject to an helical instability of an alpha-dynamo type. Using a multiple-scale

asymptotic analysis valid for small Reynolds number, we showed [1] that this is not the case and that3 the compressible effects do not alter very much the results of the incompressible case. We are planning to

use direct numerical simultations in order to investigate the case of higher Reynolds numbers necessary3 in order for the compressibility to be able to play a significant role.
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3 C.4. Subgrid Scale Modeling in Two Dimensional MHD Turbulence

(Passot, Politano, Pouquet and Sulem)

3 In this study we have extended our work on hyperviscosity for compressible flows [1] to the case

of two-dimensional homogeneous incompressible MHD flows [2]. We have been interested in comparing1



I

U 33

3 the performance and validity of different formulations with the help of numerical simulations at high

resolution. Numerical simulations without fudging at any scale of flows at Reynolds number of a few

thousand served as references. The main result is that for such flows, at a comparable "effective" Reynolds

number the large-scales are not affected by the precise functional form of the dissipation. We are thus

planning to use such techniques in the more complex case of compressible MHD self-gravitating flows in

order to study the influence of turbulence on gravitational collapse in presence of magnetic field.

3 References
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C.5. Caustics in Convection Patterns
(Pomeau)

3 Last year, some time was spent on Catastrophe theory. There is a well-known connection between

this theory and the classical problem of formation of caustics in optical fields. Those caustics from

wherever the assumptions of geometrical optics lose their validity because of singularities in the Huygens

construction. Indeed, diffraction takes care of the local structure of the wave field near those singularities,

and this is because one has a general solution of the Helmholtz equation in vacuum, owing to the linearity

of this equation. The same Huygens construction allows to draw patterns of nonlinear waves with a fixed

wavenumber, as for instance Rayleigh-Benard rolls of thermal convection. This leads quite naturally3 to the formation of caustics, when a generic focussing occurs. But then the diffraction dressing cannot

be found as easily as for linear waves, as there is no general solution of the nonlinear wave equation.3 It has been shown, however, how to deal with this problem in the limit of the phase approximation,

that is well-defined, and describes in a consistent way the nonlinear field in the neighborhood of a cusp

* singularity of this field.
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3 C.6. Evolution of Localized States and Fronts in Non-Gradient Flow Systems

(Pomeau, Jakobsen, Hakim)

3 Together with P. Jakobsen (University of Arizona) and V. Hakim (Laboratoire de Physique Statis-

tique, Ecole Normale, Paris), we developed a comprehensive pertubative approach showing specific fea-3 tures of systems with neither a Hamiltonian nor a gradient flow dynamics: those systems are in some

sense the most general. It was observed numerically that they can support finite amplitude and stable

solitary waves, when a subcritical bifurcation takes place, and those waves have been observed as well in

transition flows in lab experiments. We explained this and we made a connection with the two opposite

limits (Hamiltonian and gradient) showing that on the Hamiltonian side those solitary waves merge

with the famous solitons, but with a well-selected width, although on the gradient side they merge with

front solutions at the Maxwell equilibrium point. By combining the two pictures as well as by making a3 reasonable extrapolation in between, we got a rather general understanding of a large class of possible

time-asymptotic behaviors for those systems. This work calls for further studies in various directions.

U Reference

1. V. Hakim, P. Jakobsen and Y. Pomeau, "Fronts vs. Solitary Waves in Nonequilibrium Systems,"

to appear in Europhysics Letters.

C.7. Front Propagation

(Bernoff, Jones, Newell, Powell)

3 Currently, we are studying the propagation of fronts in Complex Ginzburg-Landau (CGL) type equa-

tions with quintic polynomial nonlinearities. These equations are partial differential equations (PDE)3 which describe the behavior of wavelike instabilities in a variety of systems, including hydrodynamics

and laser optics. The quintic term models subcritical bifurcation from stability, which is a relevant phys-

ical behavior in convective systems. A front in such a system corresponds to the spread of a developed

nonlinear behavior and is therefore a model for weak turbulent behavior. An argument was presented

for understanding asymptotic front speeds using asymptotic spatial dependence. Observable front be-

havior occurs only when the asymptotic spatial behavior of a trajectory in the Gallilean ODE (Ordinary

Differential Equation) corresponds to most unstable temporal behavior in the original PDE.3 Integrable fronts have been found using the WTC (Weiss, Tabor and Carnevale) method. These

special fronts are a consequence of the quintic nonlinearities and have no reflection in more standard3 CGL equations. Using the reasoning above, we can demonstrate that these fronts are predominant in

physical parameter regimes. Analysis of the ODE phase space shows that the special class of WTC fronts

have topological properties of strong heteroclinicity, which may help to explain their integrability. When

fronts converge to this special class of solutions, the topology requires that they converge by leaving

I
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3 behind a wave singularity. It is possible that this behavior is the one dimensional analogue of spiral

waves in higher dimensions.3 We have presented a Liapunov functional argument for front stability in particular circumstances.

This argument allows us to understand the flow of solutions in function space and thus to understand

some of the global behavior of fronts. Part of the current work is extending these arguments to more

general versions of the CGL and to higher dimensions.

3 References
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2. J. A. Powell and A. Bernoff, Saddle-node bifurcation of slowly-varying nonlinear traveling waves,3 submitted to Physica D, October 1989.
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C.8. The Theory of Compressible Fluids

(Levermore)

A new project was started this past year to study the mathematical theory of the compressible

Navier-Stokes equations. The main questions being investigated are:

3 1. The possible global existence of weak solutions.

2. The convergence of such solutions to an incompressible limit.

3 Some partial results have already been obtained, the most significant being an existent result for the

incompressible limit of a barotropic fluid.

* C.9. Kinetic Theory of Fluids

(Levermore)

The past year has seen continued progress in this area.

1. The Leray energy inequality was proved for the incompressible limit for the global weak solution to

the Boltzmann equations of R. DiPerna and P. L. Lions. This ODO shows that the weak solutions

to the Navier-Stokes equations we had previously obtained for this limit are indeed the Leray

solutions.

2. The "renormalization" needed in the DiPerna-Lions theory was weakened. It was shown that square

root saturations can replace the linear saturations of the original theory. The implications of this

fact need more investigation.I
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3 3. The control on the high velocity concentrations for the full incompressible Navier-Stokes limit of

the DiPerna-Lions solutions was improved to within (log e)2 of the hypotheses needed to justify

3 the limit.

Current Work:

1. Weakening or eliminating the hypotheses on high velocity concentrations for the full incompressible

Navier-Stokes limit.

2. Better understanding the implications for the scaling assumptions embodied in our temporal reg-

5 ularity of the limit.

3. Consideration of other fluid dynamic limits, in particular, the validity of the compressible Navier-

3 Stokes limit.
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C.1O. Laminar-Turbulent Transition

5 (Chow)

The problem of laminar-turbulent transition is of great importance. Limited analytical progress can

be made in the initial stages, where the developing and exciting technology of Laminar Flow Control

(LFC) can be applied. Benney and Chow [1,2] had recently proposed a novel idea of wave - mean

flow interaction which is very relevant and promising. By treating directly strong (not long wavelength

modulation) three dimensional (3D) disturbance, we show that a 3D disturbance will:

3 1. Distort the flow on a much faster time scale than a corresponding 2D disturbance.

2. Induce much stronger mean flow than the conventional Ginzburg-Landau type theories.

U Unfortunately, few exact sola:ions to such nonlinear wave mean flow interaction equations are known.

The well known technique in applied mathematics, namely, linearization, will directly yield an analytical

3 description of secondary instability. Up to now, we have achieved the following :

1. We investigate the 3D instability of the wake. 3D instability growth rates of a near and a far wake

are computed. The results suggest the importance of 3D features in the far wake [5].

2. The wave - mean flow interaction problem of a compressible flow is examined. We study the 3D

instabilities of a 'transonic jet' and a 'supersonic channel flow'. The paper is submitted to the

Journal of Fluid Mechanics.
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3 3. Some simple analytical properties and bounds on eigenvalues are found.

In addition, we investigate long waves in rotational flow [4,5]. Mean shear or depth dependent current

is expected to have a profound effect on nonlinear surface waves in the ocean. It is an important problem

but has not received much attention in the literature. We carry out a second order perturbation analysis

3 for the solitary wave.
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3 D. COMPUTATIONAL SCIENCE

(Brio, Indik, LeMesurier, Levermore)

I D.1. Computations in Optics

(Indik)

I D.1.a. Phased Diode Laser Arrays

Phased laser diode arrays offer the possibility of providing high power spatially collimated light fields

in miniaturized systems, making large high power conventional (CO 2) lasers redundant. Moreover, such

arrays will form an important component as light sources in future anticipated massively parallel optical

computing architectures. A number of challenging fundamental questions need to be addressed in this

area. Of paramount importance is a knowledge of the dynamic stability of such laser arrays and the

dependence of the latter on the various physical parameters. Arrays can be fabricated in one or two

dimensions. For those arrays to function in an optical communications environment they will need to be

individually externally modulated at very high frequencies (GHz).

P. Jakobsen, Indik, Moloney, Newell and H. Winful have studied the stability of one dimensional

arrays of diode lasers. They have discovered an interesting new set of equilibrium solutions to the

coupled mode equation model derived by Wang and Winful, and done extensive numerical investigations

of the stability of the various solutions, as well as explorations of the bifurcation behavior of the model

as the parameter corresponding to power is varied [1].

In addition, Jakobsen, Indik, Newell and Moloney are currently investigating the behavior of the one

dimensional array, still using the coupled mode approximation, but with an additional term added to

include the effect of an external driving field. The purpose of the external driving field is to stabilize

the otherwise quite unstable phase locked modes of the system. We have discovered a number of new

equilibrium solutions for the system, and have been able to find several stable modes, as well as a mode
which is nearly stable (the instability is sufficiently slow that for pulsed modes the lasers would look

stable), for which the power output increases as the fifth power of the number of lasers. This work is

currently being written [2].

D.1.b. Coupled-Wave Interactions in Extended Nonlinear Optical Media

* This project is aimed at developing a suite of computer codes capable of solving a variety of problems

involving the interaction of two or more laser beams in extended media. The main focus of the problem

has been the development of a time dependent 3D code to handle the complicated problem of backward

Stimulated Brillioun Scattering (SBS). This code is running well at this time. We are now extending

the code to include a third, acoustic field in the simulation, and improving the efficiency of the code by

modifications to the algorithm.

This code is currently being used to test the models for SBS that seem to offer a possibility ofI
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explaining the Optical phase conjugation effects that have been observed. We have been limiting most

of the use of this code to two dimensional problems to conserve computer resources.

We have continued our efforts to improve the efficiency of the code that we use to solve the SBS

problem and other counter-propagating beam problems. We are incorporating suggestions from J. Hyman

into the code to take advantage of an improved trapezoid rule algorithm as well as a scheme to increase

the size of the propagation step we can use in our split step algorithms by integrating the equations for

the first time derivative of our propagation equations. This should allow us to take advantage of the fact

* that the systems we are studying tend to converge to a nearly steady state after there initial transient

behaviors have passed. The algorithms more typically used, do not allow one to take advantage of this

behavior, since the individual steps of the split step, are not at rest.

As before, all code is fully vectorized, an we are testing codes on the Cray-2 at Kirtland. As mentioned

above we are also modifying the code to include the material response.
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D.2. Discontinuous Solutions of Hyperbolic Systems

(Brio)

* In the last year we have continued to study questions related to the discontinuous solutions of the

hyperbolic systems. In [1], we have started to study of a model problem, which we proposed in [2] in

order to clarify discontinuous solutions for the magnetohydrodynamic and elastic equations. Currently,

together with a graduate student Y.-F. Chen, we are extending this study to 3 x 3 system. In particular,

we are studying travelling waves, admissibility criteria for shock waves, interaction of shock waves with

small disturbance waves, and constuction of the solutions to the Riemann problem.

In [3], we have derived a canonical asymptotic equation which describes the transverse waves with cer-

tain isotropy property (rotational invariance) in the manner Burgers' equation describes the propagation

of a single weakly nonlinear longitudinal wave. The derivation is done for a general class of rotationally

invariant hyperbolic systems of conservation laws in one and several dimensions, and applications to

various branches of continuum mechanics such as magnetohydrodynamics, elasticity and viscoelasticity

are considered. In the future, we will extend this work by allowing systems with elliptic regions [4].

Currently, we are studying resulting asymptotic cubically nonlinear system in 1-D case with a diffusion

term. In particular, viscous profiles and their relation to the new type of shock waves in magnetohydro-

dynamics and elasticity. Also, using a generalization of the above system by including a weak diffraction,

I
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we will focus on the numerical study of the transverse stability of such shock waves and compare it to

the 2-D Burgers' equation. The results will be presented in [5].

In [6], we have extended the notion of the solution to the inviscid Burgers' equation for a time larger

than the breaking time by using its connection to the Kepler's problem, and following the known solution

of the later problem. It allows us to obtain an explicit Fourier series solution for an arbitrary initial 2fr-

peridic initial data. As a by-product, we obtain a uniform asymptotic expansion of the solution near the

breaking time, and suggests the behavior of the spectral coefficients to problems with discontinuities.

Currently, we are studying the interpretation of the proposed regularization in terms of particle dynamics,

motion of singularities on a complex plane, and its relation to the resonantly interacting waves such as

* Rayleigh surface waves.
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D.3. Lattice Gas Hydrodynamics

(Levermore)

The prospect that lattice gases can be used effectively to simulate real fluid dynamic behavior has

lead to a renaissance in thinking about the relation between microscopic and macroscopic physics over

the last four years. Within the last year we have seen continued development of the FCHC lattic gas

for incompressible Navier-Stokes flow past obstacles. This gas lives on Z3 with the state at each site

coded by 24 bits corresponding to the 24 possible velocity states that can be occupied by particles. The

collisional dynamics can be computed via a table look-up which requires at least 223 entries of 24 bits,

a table which fills a significant fraction of core on a CRAY-XMP.I
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Building on ideas of P. Rem and J. Somers, a new algorithm was developed for computing the

collisional dynamics using compound applications of a single table containing 216 entries of 16 bits. This

significantly smaller table allowed the efficient implementation of the FCHC lattice gas on a Connection

Machine CM-2 at Thinking Machines, Inc. in collaboration with B. Boghosian [1].

Another difficulty in lattice gas simulations arises from controlling the fluctuations in the spatial-

temporal averages used to construct the macroscopic fields. This noise may be mitigated in two ways:

one can make the lattice finer thus increasing the number of spatio-tempered sites averaged over; one3 can introduce an ensemble over which to average. Each of these methods presents difficulties; the first

causes the time step represented by one cycle time to drop as the square of the refinement ratio, greatly

increasing work, while the second method runs the risk of having the macroscopic dynamics of different

elements of the ensemble to drift apart from each other. The technique of ensemble dynamics was

developed to address the latter difficulty. Different implementations of theses ideas were applied to solving

diffusion equations [2,3]. In each case, the build-up of unwanted correlations was carefully measured,

clearly showing deviations from the lattice Boltzmann approximation. The best results were obtained

when the "particles" moving between ensemble members did not respond to the particles contained

within each member [3,4,5].
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3 D.4. Self-Focusing Phenomena in Lasers

(LeMesurier)

This work [1,2] has dealt principally with the initial value problem for the nonlinear Schridinger

equation:
i1 + kd20+ Vpj, = o, 101'=o = 100

k=d

The main cases studied have been:

1. The Kerr nonlinearity V(I) = I with d = 2,

2. Variants of the Kerr nonlinearity that saturate at high beam power intensities I: 1/(7 + I) and

I - 1_y2 .

3 3. The Kerr nonlinearity with d = 3, a "supercritical" case.

4. V = 12, d= 2, another supercritical case.

N The first is a simple model of self-focusing of laser beams, the second refines this model in a way that

eliminates singularities, and the third is a simple model related to Langmuir turbulence in plasmas, The

fourth is a mathematical convenience: it solutions seem to have much the same pattern of behavior as

the third equation, without the extra computational cost of working in three dimensions.5 With the Kerr nonlinearity singular spikes can evolve (focusing), while with the saturating modifi-

cation, one gets a train of intense narrow spikes (partial focusing).* This leads to severe difficulties in3 numerical solution, and the main challenge has been the development of numerical methods that resolve

the extremely fine spatial scales that develop in all coordinate directions.

The numerical solutions use a dynamically determined, single parameter, z dependent dilation rescal-

ing of all variables to !j, T, T. This rescales transverse coordinates(Xk, longitudinal position z and field ¢

by appropriate powers of a length scale for the developing focus so that the leading order terms and non-

linearity are unchanged, and only a lower order term is introduced. The length scale for rescaling evolves

under an equation that holds the quantity G = f IV'I 2d• constant. G measures growth in ampliude3 and derivatives, and this rescaling eliminates any substantial growth in amplitudes and derivatives of

the rescaled quantity. Any singularity is transformed to a cetain nice limiting behavior as f- > oo. Thus

the transformed equations have well-behaved solutions, and can be solved numerically in a reasonably

straightforward way. They are also useful, in somewhat modified forms, for analytical studies.

One difficulty is that the dilation rescaling should have a center at or very near the focusing center:

otherwise the rescaled location of the singularity moves towards ;nfinity when a singularity occurs and

far from the t origin with strong partial focusing.

This was initially guaranteed, along with faster numerical codes, by using cylindrically symmetric

data. These simulations have been followed solutions to beam intensity growths by factors of up to 1010U
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3 with the Kerr nonlinearity and 104 for saturating nonlinearities, revealing several interesting features

near the foci. These include new conjectures as to the intensity growth rate and spatial structure near3 a focus, and evidence contradicting earlier conjectures about the decay of trains of multiple foci in the

saturating case.

More recent work has removed the restriction of cylindrical symmetry, imposing reflection symmetry

in each xk axis to fix the focusing center at the origin. So far this his been applied to case 1. above. For

a variety of initial data the solution evolves towards a cylindrically symmetric structure in the "inner

region". That is the region near the singularity, whose size changes with the rescaling length scale: the

region of constant dimensions in the xk coordinates. These observations vindicate the previous cylindri-3 cally symmetric studies as relevant for this nonlinearity. They also suggest an extension of Weinstein's

theorem [3] giving this convergence to symmetry in the special case of beams having exactly the minimum3 power needed for focusing to occur.

Current work in progress includes:

1. Checking whether convergence to singularity occurs in the other cases above. (This is considered

quite likely not to hold in supercritical cases.)

2. Developing a new adaptive regridding strategy that will resolve multiple singularities and singu-

larities without cylindrical limiting behavior, without prior knowledge of the location or form of

the singularity. This will probably be based on keeping the beam power (f 1¢'2 ) nearly constant

on grid cells, by analogy to the Lagrangian formulation for fluids.

3. Refining the physical modeling by adding such features as forward and back propagating waves

and stimulated Brillouin scattering.

4. On the theoretical side, partial results have been attained in confirming the numerically inspired3 conjectures, and this effort will be continued.
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3 E. INTEGRABLE SYSTEMS AND GEOMETRY

(Ercolani, Flaschka, McLaughlin)

I E.1. Gauge Field Constructions

(Ercolani)

I With A. Sinha (Ohio State University), Ercolani has explicitly constructed the general solution of

Nahm's equations which parametrize the space of k-monopoles. The latter constitute stationary finite3 energy point defect solutions for a three dimensional nonlinear electromagnetic theory and are higher

dimensional analogues of two dimensional vortex states.3 Ercolani, together with R. Montgomery (U. C. Berkeley), are currently using this construction to

study monopole dynamics.

I E.2. Construction of Constant Mean Curvature Surfaces

(Ercolani)

I The structure equations for a doubly periodic constant mean curvature immersion in R3 are equiva-

lent to the elliptic sinh-Gordon equation and its associated z, Zz eigenvalue problems on a doubly periodic3 Idomain. Proof that solutions exist depends on showing that a highly transcendental set of arithmetic

conditions can be satisfied. Recently Ercolani, together with H. Kn6rrer and E. Trubowitz (ETH, Zilrich)3 have demonstrated this. The result has applications to the construction of stationary solutions to the

hydrodynamic Euler equations in special geometries. More generally, they plan to develop these methods3 into a general tool with which to demonstrate existence for global problems in differential geometry.

E.3. Topological Classification of Integrable PDE

(Ercolani, McLaughlin)

With D. McLaughlin (Princeton University), we have modeled Fomenko's two degree of freedom inte-

grable foliations in an infinite dimensional, spatially periodic soliton system. Specifically, the analyticity

of the spectral transform provides a transparent description of the critical sets and, in their neighbor-3 hood, the twisting of the foliation. Numerical studies, by Arizona graduate student C. Schober, have

shown that this topological signature has a crucial determining effect on how the integrable structure3 breaks up under perturbations. We are examining this analytically. The above work will appear in the

proceedings of a 1989 MSRI summer workshop on symplectic geometry.

3 E.4. Painlev6 Analysis of the Toda Lattice

(Flaschka)

I The question is: how do the symmetries of an integrable system lead to regularizations of the solutions

in the complex (time) domain? In the most accessible cases, all solutions are meromorphic, and one canI
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3 compactify the level varieties of the constants of motion. A particularly complete picture is available

for the Toda equations associated to semisimple Lie algebras. Flaschka and Zeng [1] compute all the

Laurent series solutions. Flaschka and Haine [2] study the geometry underlying the compactified Toda

level varieties. Ercolani, Flaschka and Haine [3] show how the compactification is constructed, and they

relate the geometry to dynamics.
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3 E.5. Momentum Mappings

(Flaschka)

The methods developed for the complex Toda lattice were applied to prove that the compactified real

level surfaces are symplectically isomorphic, via a momentum mapping, to certain convex polyhedra [1].5 As a byproduct, the convergence of the QR algorithm for tri-diagonal matrices is seen to follow from

the asymptotics of a gradient flow in a natural Riemannian metric. Flaschka is currently trying to relate

these ideas to recent developments in Poisson geometry, and then to extend them to general symmetric

matrices. Flaschka and his student, M. Zou, are also investigating certain infinite-dimensional versions

* (involving loop groups) of these results.
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E.6. Nonlinear Poisson Structures

3 (Flaschka)

Flaschka's student, P. Damianou, in his thesis (May 1989), studied two problems in the geometry

of Hamiltonian systems. First, he found an infinite family of compatible Poisson brackets for the Toda

lattice; there is one bracket of degree n for each n > 1. His methods are new, and don't yet fit the familiar

bi-hamiltonian theories. Damianou also computed a class of nonlinear Poisson brackets associated to the

group of n x n matrices. The formulas for the brackets reflect singularities of sets of nilpotent matrices.

I
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3 These are mostly experimental results, obtained by symbolic computation, and conceptual explanations

still need to be supplied.

I E.7. Topology of Level Surfaces

(Flaschka)

Flaschka [1] introduced a class of integrable systems whose level surfaces are neither tori nor cylinders

nor planes, and which do not have the Painlev6 property. He is currently analyzing other examples, to

see what topological types are possible, and to understand the dynamics on those non-standard surfaces.
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F. RANDOM DISTRIBUTED SYSTEMS

(Kennedy, Newman)

I F.1. Exactly Soluble 3D Random Surface Model

(Newman)

I A major accomplishment was the discovery (jointly with D. Abraham) of a new exactly soluble three

dimensional random surface model with a wetting transition. The inital announcement [11 appeared in3 Physical Review Letters, followed by a long paper (2] and a conference review [3]. Work is in progress

on the relation between wetting and roughening in this model.3 Numerical work on the trapping transition in two dimensional percolation (jointly with graduate

student M. Pokorny and with D. Meiron) was completed [4]. It was shown that earlier claims (by other

authors) of a new universality class were incorrect. Other work in percolation included the discovery

of an intermediate "layered" phase for certain tree-like lattices [5] and the extension of those results to

Ising models [6].

Significant progress was made on the longstanding open problem of proving continuity of the perco-

lation phase transition for arbitrary spatial dimension. This was done for percolation in orthants [7] and

half-spaces (8]. Work continues on the problem in a full space.

Motivated by issues related to Ising spin glasses, an unexpected property of domains in ordinary

Ising ferromagnets was discovered [9]. Much current work (jointly with D. Stein, M. Aizenman and A.

Gandolfi) concerns spin glasses and related percolation models.
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3 9. D. T. Stein and C. M. Newman, Broken Symmetry and Domain Structure, submitted.

F.2. Ising Spin Systems

(Kennedy)

A rigorous study of the "majority rule" renormalization transformation for Ising spin systems is

under way. The first step [1] was to develop finite volume criteria that insure that the infinite volume

system is in the high temperature phase. The finite volume criteria can then be tested with the help of a3 scomputer. One of the key ingredients of the folklore about the majority rule transformation is that the

constrained system that appears in the definition of the majority rule is in the high temperature phase

even if the original system is at the critical point. Using the criteria of [1], 1 can now prove this happens

in a particular example.3 Numerical studies of quantum spin chains have addressed two different issues. The first study [2]

is related to the Haldane's conjecture that there is a gap in the spectrum of the spin-1 Heisenberg

chain. This numerical study was the first to consider chains with open rather than periodic boundary

conditions, and found a different behavior for the low lying eigenvalues. One consequence of this behavior

is a good estimate of the correlation length of the chain. A separate numerical study [3], in collaboration3 with D. Guo and S. Mazumdar (University of Arizona Physics Department), dealt with the existence of

the spin-Peierls transition in quantum spin chains.5 For classical spin systems in which the correlation functions decay exponentially there is a large

amount of rigorous work on the power law correction to this exponential decay (Ornstein-Zernike decay).

For the correlations in the ground state of a quantum spin model one can also ask what is this power

law correction. The only examples in which anything rigorous could be said were examples that were

exactly solvable. The proof has now been carried out in a model that does not admit an exact solution. 4

A similar question is to study the decay of the finite volume corrections to the ground state energy of

quantum spin models. M. Pokorny (graduate student in Applied Mathematics) has begun work on this

* problem.
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* G. DYNAMICAL SYSTEMS

(Liverani, Wojtkowski, Young)

I A dynamical system is defined by a set of differential equations, or in the discrete time case, by

a transformation of some state space. The goal of this subject is to understand the time evolution3 of physical processes. Wojtkowski and Young work with chaotic dynamical systems with exponential

divergence of orbits and strong mixing properties. Their tools include methods from geometric analysis3 and ergodic theory. Wojtkowski specializes in conservative systems. He studies specific models from

mechanics and has developed mathematical techniques for dealing with many of them. During the last

two years he made a major breakthrough in the analysis of a system of n balls bouncing in a vertical

tube with an elastic floor. This being a model for interacting particles, one is typically interested in the

case when the number of balls is very large. Wojtkowski's work is the first successful analysis of this kind

in which no restriction whatever is placed on the number of balls. Young works with general, qualitative

theories that can be applied to a wider range of systems. Her main focus the last two years is on the role

Sof noise. The question is the following: Given that physical measurements are never exact, and random

fluctuations occur in ways beyond one's control, to what extent do these random forces shape or alter3 dynamical behaviors in the long run? Young obtained some answers to some of these questions.

G.1. Hamiltonian Dynamical Systems

3 (Wojtkowski)

In the last couple of years we concentrated on the problems of unstable (hyperbolic) and stable3 behavior in hamiltonian systems resulting in the following:

1. A remark on strong stability of linear Hamiltonian systems. (Journal of Differential Equations, 81

(2) 313-316).

In this short paper we formulated a criterion for strong stability of the equilibrium in a linear

hamiltonian system (or of the fixed point of a linear symplectic map). The simplest sufficient

condition is positive definiteness of the (quadratic) hamiltonian. We introduce a series of quadratic

first integrals and prove that strong stability is equivalent to positive definiteness of some linear

combination of these first integrals.

I 2. A system of one dimensional balls with gravity.(To appear in Communications in Mathematical

Physics).

The system of one dimensional balls in an external field II.(To appear in Communications in

Mathematical Physics).

In the first paper we introduced a Hamiltonian system with arbitrary number of degrees of freedom

(dimension) for which we can establish nonvanishing of at least one Lyapunov exponent almost
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3 everywhere. It is a system of n particles in a line which fall down with constant acceleration towards

a hard floor and collide elastically with each other. Particles can be considered point particles or3 they may have size (hard rods). We establish nonvanishing of Lyapunov exponents by introducing

a quadratic form in the tangent bundle and checking that under the assumption of nonincreasing

masses the quadratic form does not decrease and it increases on some tangent vectors. There

is a similar situation in Sinai's gas of hard spheres. In the general case of arbitrary number of
spheres [2,10] non-vanishing of only few Lyapunov exponents can be established. Although there is3 little doubt that the system has all exponents different from zero one encounters serious technical

difficulties; see the paper about three balls by Krimli, Siminyi and Sz~sz, [7]. What one needs3 to prove to get nonvanishing of all exponents is first that every ball is connected by a chain of

collisions with every other ball and secondly that certain conspiracies (too technical to formulate

here) can occur only on orbits of total measure zero. For our system the former is taken care of

automatically (all collisions that can occur do occur on all orbits) but we still cannot prove the

latter.

In the second paper we modified the potential of the external field from V(q) = q to V(q) such that

V'(q) > 0 and V"(q) < 0. These requirements allow in particular for the standard gravitational

potential V(q) = -1/q. In such a system nonvanishing of all Lyapunov exponents can be established

fairly easy under the usual assumption that the masses of the particles decrease as we go up. In

this paper we refined the method of a Q-form for hamiltonian systems. We spell out the conditions

which a quadratic form in the tangent bundle of the ambient phase space has to satisfy to project3 nicely on the subspace transversal to the flow. We believe that this formulation will find many

other applications.

3 3. (with J. Cheng) Linear stability of a periodic orbit in the system of falling balls. (Preprint 1989).

In this joint paper with graduate student J. Cheng, we investigate the condition of decreasing

masses in the system of falling balls with constant acceleration. Our goal was to check if this

condition is necessary for mixing behavior in all of the phase space. Independent of the masses we3 find a periodic orbit and we establish its linear stability if the masses increase as we go up. Although

we are unable to find the Birkhoff normal form and apply KAM theory rigorously our result is3 a very strong indication that in the case of increasing masses there are pockets of quasiperiodic

motions in the phase space. It brings out the reason why so few systems are known where all of

* the phase space is in the mixing component.

4. Linearly stable orbits in 3 dimensional billiards. (To appear in Communications in Mathematical

3 Physics).

I
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3 We address here the problem of 3-dimensional billiard systems with convex boundaries. We con-

struct a linearly stable periodic billiard orbit which reflects only in eight semispheres in R 3 . Given3 any distance 1 (not smaller than the diameter of the semispheres) we consider two parallel planes

at this distance. We attach four semispheres to each of the planes (on the outside). The positions

of the semispheres are the free parameters in our construction. We adjust them in such a way

that there is a highly symmetric periodic billiard orbit which reflects only in the semispheres. We

are still left with some free parameters and we show that in a certain range of these parameters

the periodic orbit is linearly stable. Our construction shows that even with the simplest convex

surface - the sphere, the presence of linearly stable orbits cannot be excluded by merely putting

Sthe convex pieces sufficiently far apart, which is the case for planar billiards [11].

Future Projects

1. The model of n falling particles in a line should be studied further. The first problem is to prove

ergodicity. Recent work of Krimli, Siminyi and Szgsz [8] clarifies the methods of Sinai and Chernov

[2]. We hope that these methods can be adapted to the system of falling balls in an appropriate

external field. In case of success this will be the first known system of interacting particles for

which ergodicity can be established rigorously for arbitrary finite number of particles.

2. The measure theoretic entropy of the system (the sum of positive Lyapunov exponents) is positive.

It is interesting to study its asymptotics as the number of particles increases to infinity. One would

expect that if we keep the energy per particle fixed the measure theoretic entropy should grow3 linearly. If it does not it will require special explanation.

3. The periodic orbit in our system studied in [3] seems to be a good candidate for numerical study3 of Arnold diffusion. We found explicitly the Poincar6 section map for this periodic orbit and we

know fairly well when it is strongly stable (in linear approximation). The formulas are remarkably3 simple which allows for increase of the dimension (number of particles) so that hopefully the Arnold

diffusion could be distinguished from numerical errors.

3 4. The methods we used in the study of the system on n falling balls do not allow the introduction of

a ceiling which is quite natural from the point of view of statistical mechanics. More precisely we3 would like to study this system subject to additional constraint that the particles bounce off an

elastic obstacle both at the bottom and at the top, i.e., they are confined to a finite box. Such a

system is no longer self similar for different values of the total energy, which is the case in the system

without the ceiling if the acceleration is constant. It is interesting to know if the introduction of

the ceiling can indeed produce stable periodic orbits in the case of decreasing masses.

5. In a recent paper, Donnay and Liverani [4] found large classes of finite range potentials which

produce nonvanishing of Lyapunov exponents in all of the phase space of a particle moving in the
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3planar central field. This is an improvement on the earlier work of Knauf [6] in which he applied

Maupertuis principle to some problems of this kind and showed their equivalence to geodesic flows

on surfaces with nonpositive curvature. They were unable to extend their results to three or more

dimensions. On the other hand, it is well known that the Kepler problem in any dimension is

equivalent for positive values of energy to the geodesic flow in the hyperbolic space [9],[1]. This

indicates strongly that some sort of condition on the potential should guarantee the nonvanishing

of Lyapunov exponents also in three and more dimensions. We hope the approach from [12] will

* give us such a condition.

6. Both in Sinai's gas of hard balls and in our model of falling balls the interaction of particles

occurs via elastic collisions. We would like to find a smooth potential of interaction which would

guarantee the strong mixing behavior in all of the phase space. We conjecture that in one dimension

the standard gravitational potential (V(r) = -1/r) has this property. In particular all periodic

solution of the colinear n-body problem are linearly unstable. Since this system is open (at any

value of the energy) the conjectured hyperbolicity most probably implies that almost all solutions

escape to infinity (one of the particles escapes to infinity).

7. It is interesting to study the asymptotic behavior of solutions in the system of falling balls in an

external field which allows for escape to infinity (potential well of finite depth). For instance, is

it true that for almost all orbits with k particles coming from infinity exactly k particles escape

to infinity in the future? More generally one would like to understand better the consequences of

local exponential instability in an open (noncompact) system.

8. The conjecture [13] that the system of falling balls with constant acceleration has all Lyapunov

exponents different from zero remains unproven. Although some of the difficulties involved resemble

those in [7] it may very well be a much simpler problem, where in particular the case of arbitrary

number of particles could be treated.

9. Recently Gutkin [5] considered dynamics of hard balls with rotational degree of freedom. We plan

to investigate Lyapunov exponents of this system. Based on our experience, [12] we hope that this

additional feature of the dynamics will make it easier to establish nonvanishing of all Lyapunov

exponents.
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G.2. Random Perturbations of Dynamical Systems

(Young)

By a randomly perturbed dynamical system, we mean a Markov process on the same state space. By

small random perturbations of the diffeomorphism f, we refer to the fact that the transition probabilities

give z are measures concentrated near the point f(x).3 The main interest is in two types of problems in this area. The first is how the presence of noise

changes the dynamical characteristics of the system. One would expect the averaging effects of random

perturbations to destroy accidental coincidences so that noisy systems would have nicer properties. This

theme is explored in two papers by Young and Ledrappier [6,7].

The other question concerns statistical behaviors of zero noise limits. Would small random perturba-

tions drastically alter the asymptotic distributions of points? (In order for this question to make sense,

we must impose some conditions on our noise, such as some control on the densities of the transitionI
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probabilities.) If a system is essentially impervious to small random perturbations, we will say that it

is stochastically stable. The questions of which dynamical systems are stochastically stable and whether

the typical system is stable or not are wide open. Y. Kifer proved in the early 1970's that Axiom A

attractors are stable [5]. Later on, Young duplicated his result using a different approach [9]. Until a few

years ago little was known beyond that.

Last year, in collaboration with F. Ledrappier, Young studied the effect of noise on the computation

of Lyapunov exponents. We added some noise to each iteration of the dynamical system and compared

the Lyapunov exponents of this noisy system to those of the noise free one. Our findings are that while

deliberate attempts to sabotage computation results of this kind will usually succeed, genuinely random

noise at low levels will almost surely not have drastic effects on the computation of exponents. These

results are contained in [8].

Young also used the logistic maps as a model for study. This project was carried out jointly with

M. Benedicks and the manuscript is in its final stages of preparation [2]. While logistic maps are very

simple as dynamical systems, they are also known to be sensitive to parameter changes. That is, small

changes in parameters can lead to different types of dynamics. Benedicks and Young proved that if our

noise is sufficiently random and at a sufficiently low level, then most of these systems have very robust

asyjmptotic distributions.

Young plans to look for more unified techniques that will enable her to obtain similar results for

* larger classes of dynamical systems.

G.2.a. Statistical Properties of Strange Attractors

(Young)

One of the major discoveries in this area in the late 1960's and early 1970's is that in the basin

of attraction of an Axiom A attractor, Lebesgue almost every trajectory has the same asymptotic

distribution. This discovery is due to Sinai, Bowen and Ruelle, and the distribution is known as the SBR

measure. In principle at least, the notion of SBR measures can be extended to all strange attractors.

(See e.g., [4].) In practice, however, it is extremely difficult to prove (or disprove) that these distributions

3 exist for systems that are not Axiom A.

In collaboration with Benedicks, Young is studying this question for the so-called Henon maps. These

maps have at the same time fascinated and frustrated mathematicians ever since their discovery by the

physicist Henon. This is because they appear to be very simple, their dynamics clearly typify those

of nonuniformly hyperbolic systems, and yet they have remained intractable for a long time. Recently

Benedicks and Carleson showed that for a large set of parameters, these maps have attractors with very

complex behavior [1]. Benedicks and Young believe they can prove that these attractors admit SBR

measures, rendering them quite well understood after all from the statistical point of view [3].

I
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I Ill. THE COMPUTATIONAL ENVIRONMENT FOR RESEARCH

In the last three years the availability of computational resources to members of the University

of Arizona Mathematics Department and the Applied Mathematics Program has increased

dramatically. This has had a dramatic effect on the research that has been undertaken within the

department. The AFOSR grant to the Arizona Center For Mathematical Sciences, together with

matching funds provided by the University, has allowed the Mathematics Department to buy the

equipment necessary to let our computers communicate among themselves and with remote sites. We

were initially able to buy the nucleus of a network of SUN workstations (4 stations, a server and the

communications hardware to interconnect all of the SUNS) which has now expanded to include 22

SUNS and an IRIS super graphics workstation that was donated by Silicon Graphics Incorporated. We

also have added a high speed link with the Cray-2 computer at Kirtland Air Force Base from the SUN

network and we have been able to order an upgrade for the IRIS workstations that will dramatically

increase its ability to produce real time graphics, and thus increase its usefulness in producing

I interactive graphics in combination with the Cray-2 or other supercomputers.

A wide variety of projects have benefited from the ready availability of time on various

systems. The projects have ranged from Abstract Algebra and Number theory, to Fluid Mechanics and

Nonlinear Optics to Neural Nets and Percolation. The computers that have been of primary use to

researchers include the Department's network of 22 SUN graphics workstations, the Departmental Nlax

750, the University's convex C240 mini-supercomputer and the NSF supercomputers in the centers at

Princeton, San Diego and Pittsburgh. We have also been making good use of the Cray-2 at Kirtland

Air Force Base. The SUN workstations are used for a variety of interactive jobs. Research programs

involving small to moderate computations in Algebra, Optics and Fluids have been developed and run

on the SUNs. In addition, the windowing on the SUNs make them an excellent environment for

development and debugging larger programs destined to be run on a mainframe or a supercomputer.

The SUNs also provide access to NSF net and Kirtland Air Force base. We use them to provide

graphics for remote jobs running on larger computers. We will soon have a SUN 4 added to the

network. That will provide us with mainframe power for intensive numerical and graphical

applications.

I Recently, an IRIS 4D super graphics workstation was donated to us from Silicon Graphics

Incorporated. We plan to make this machine an important part of the training of graduate students in

the computational sciences. The addition of a graphics machine capable of displaying real time three

dimensional color animation means that systems that we could only examine at a few selected times

can now be taken in dynamically. This is also a very important tool for studying and developing

intuition about dynamical systems. The photographs at the beginning of Section 11 were taken on the

I IRIS.
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I The University provides those faculty members with research grants access to a VAX 8650

mainframe. This mainframe machine has a wealth of software packages and libraries installed

including MACSYMA and DISSPLA. It is frequently used for projects which are too big to run on the

SUNs. Quite a few Optics and Fluid projects have been run there.

I For projects that will not run on a workstation, we have access to the various national

supercomputing centers via NSF net. Of course, a separate grant application for time is required, but

we have the advantage of being able to develop programs and test prototypes on our local machines.

In addition, we have the local graphics capability to analyze and display the data that is generated on

I the supercomputers. One of the most serious problems in making effective use of supercomputers is

interpretation of output. The volume of data that the supercomputers can and do produce is

staggering. Investigators who can glance over a couple of pages of numbers, scribble for awhile and

understand the output from a problem that runs on a mini-computer, need a completely different

approach with the reams of data produced from a supercomputer. The IRIS graphics workstation, the

SUN workstations and, to a lesser extent, the graphics terminals that are available within the

department make it possible to quickly generate and examine graphical data. In fact, the limiting3 factor is often the speed of transmission of the graphical data from the remote center to us.

We have started a collaboration with colleagues at Kirtland Air Force Base to study some3 problems in nonlinear optics. They have given us access to their Cray-2 supercomputer and we have

recently set up a 56 K-baud high speed link. In the meantime, we have had telephone access which has3 allowed for some initial development of applications. Our limited ability to move data back and forth

for analyses has been the bottleneck to date, but now that the high speed link is in place we have a

tremendous amount of computing power intimately linked with our graphics workstations. We have

been able to make use of the large memory and parallel architecture of this machine to study problems

in time dependent, three dimensional, nonlinear optics. The combination of a high speed link to the

Cray-2 and the graphics on the IRIS 4D should make it possible to understand the transient behavior

of the optical equations.

As the preceding indicates, our computing environment is already very strong. We are

continuing to expand that environment with connections to remote machines and relationships with

other research organizations. There is a tremendous variety of research activity making use of the

computational resources and we believe those resources have made a real difference in the amount and

3 quality of research that has been produced.
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IV. SPECIAL YEAR PRORAMS

Over the past few years, the Department of Mathematics has organized Special Years in several areas. The
purpose of these events is to bring to Arizona a mix of established and young mathematicians who will work
together (in seminars, lecture series, joint projects) with our own faculty and students in order to explore in the
broadest possible way frontiers of their chosen are. In Spring 1986, there were two programs, one on Algebraic
Geometary with an emphasis on Abelian varieties and another on Chaos and Turbulence. In 1987, our focus was on
Computational Mathematics. In the Spring of 1988, In collaboration with the Complexity Center, the emphasis
was Probability and Applications and brought together researchers interested in Statistical Mechanics, Image
Processing, Random Media and Chaotic Dynamics. Other topics also under consideration are Geometry and
Mathematical Models in Physiology.

The listings below are visiting colleagues who participated in each of these events.

Spring 1986 Spring 1987

Chaos and Turbulence Computational Mathematics
A. Bernoff, Cambridge University C. Beattie, Virginia Polytechnic Institute
T. Bohr, University of Copenhagen R. Eggleton, University of Newcastle
11. Brand, Wiezmann INstitute R. Guy,Univeristy of Calgary
M. Casdagli, La Jolla Institute M. Israeli, Technion, Haifa
S. Chow,Michigan State University J. Lagarias, Bell Laboratories
P. Coullet, University of Nice F. LeDrappier,University of Paris
M. Cross, California Institute of Technology A. Odlyzko, Bell Laboratories
P. Hohenberg, Bell Laboratories J. Selfridge, Northern Illinois University
J. Marsden, University of California-Berkeley D. Shanks, University of Maryland

R.MacKay, University of Warwick H.C. Williams, University of Manitoba
A.Mazor, Los Alamos National Laboratory
S.Newhouse, University of Maryland Spring 1988
B.Nicolaenko, Los Alamos National Laboratory Probability/Statistical Mechanics
A. Pocheau, CEA, Saclay-Orsay D. Abraham, Oxford University
D. Rand, University of Warwick M. Aizenman, Courant Institute
E. Siggia. Cornell University G. Baker, Jr., Los Alamos National Laboratory
M. Tabor, Columbia University J. Bricmont, Princeton University
C. Tresser, University of Nice M. Denker, University of Heidelberg

S. Geman, Brown University
Algebraic Geometry G.R. Grimmett, Unversity of Bristol

E. Arbarello, University of Rome P. Hagen, Los Alamos National Laboratory
A. Ash, Ohio State University T. Kennedy, Princeton University
Sir M. Atiyah,Oxford University R.Maier, visiting, University of Arizona
S. Beckmann, University of Pennsylvania T. Prost, FU Notre Dame Namur (Belgium)
K. Coombes, University of Michigan E. Seiler, University of Munich
M. Comalba, University of Pavia H. Spohn, Max Planck Institute, Munich
R. Donagi,Northeastern University H. Zoladek, Warsaw University
D. Gieseker, University of Califomia-Los Angeles
L. Haine,University of California Fall 1989
S.Shatz, University of Pennsylvania Blomathematics
C. Tracy, University of California-Davis M. Avellaneda, Courant University
B. Van Geemen, Institute for Advanced Study P. Diamond, Universityof Queensland

B. Fittingof, Syracuse University
Fall 1986 W. Getz, University of California-Berkeley

Computational Mathematics S. Grossberg, Boston University
A.O.L. Atkin, University of Illinois-Chicago V. Krinsky, Institute of Biological Physics, USSR
A. Bernoff, Cambridge University D. Lewis, University of Minnesota
F.R. Beyl,Portland State University B. Nicolaenko, Arizona State University
R. Blecksmith,Northern Illinois University H. Papenfuss, Ruhr University. West GermanyJ. Buchmanni, University of Dusseldorf D. Szasz, Hungarian Academy of Sciences

J.P. Caputo, Grenoble G. Wokowicz, McMaster University
M. Casdagh, University of California-San Diego
.. Deutsch, Brown University Spring 1990
U. Homung,Munich University Nonlinear Optics and Turbulence
A. Iserles, Cambridge University P. Coullet, University of Nice
P. Jurs, Pennsylvania State University A. Dyachenko, Institute of Cybernetics, USSR
H. Karzel, Munich Technological University I. Gabitov, Academy of Science, USSR
D.H. Lehmer, University of California-Berkeley 1. Lega, post-doc, University of Arizona
E.Lehmer, University of California-Berkeley R.J. McKellar, Univsity of New Brunswick
P. LewisNaval Postgraduate School Y. Pomeau, Ecole Normal Superieure
17. McKay, Concordia University A. Pushkarev. Institute of Cybernetics, USSR
E. Overman, Ohio State University A.Rubencik, Novaibirsk,USSR
M. Newman, Australian National University Z.-S. She, Princeton University

M. Newman, University of California-Santa Barbara V. Shvets, Institute of Cybernetics, USSR
H. Pahlings, RWTH Aachen E. SiggiaComell University
S. Perone, Livermore Laboratory V. Zakharov, Landau Institute, USSR
V. Pless, University of Illinois-Chicago S. Zaleski, Paris
G. Simmons, Sandia Laboratories
N.J.A. Sloane, Bell Laboratories
0. Taussky, California Institute of Technology
S. Wagstaff, Jr., Purdue University 59
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I V. BIOGRAPHIES

A - FACULTYI
BRUCE BAYLY, 29, Ph.D. 1986, Princeton University. Postdoctoral visiting member 1986-88 at
Courant Institute of Mathematical Sciences; Assistant Professor, Mathematics, University of Arizona
1988-.

Research Interests: Kinematic and dynamical problems in three dimensional steady state flows.

MOYSEY BRIO, 37, Ph. D. 1984, University of California, Los Angeles. Assistant Research Physicist,
Physics, UCLA, 1984-87; Assistant Professor, Mathematics, University of Arizona, 1987-.
Research Interests- Magnetohydrodynamics, fluid dynamics.

3 KWOK WING CHOW, 31, Ph.D. 1986, Massachusetts Institute of Technology. Post-Doctoral
Instructor, 1986-88; Assistant Professor, Mathematics, University of Arizona 1988-.
Research Interests- Alternative approach to stability theories.

NICHOLAS M. ERCOLANI, 37, Ph.D. 1980, University of California at Berkeley. Assist. Professor,
Ohio State Univ. 1980-1984; Assoc. Professor, Univ. of Arizona 1984-present. National Science
Foundation Fellow 1984-87. Sloan Foundation Fellow 1987-88.
Research Interests:. Algebraic geometry, complex function theory, spectral theory, integrable pde.

WILLAM J. FIRTH, 45, Ph.D. 1975. Visiting Researcher, Heidelberg University 1978-79; Senior
Lecturer Heriot-Watt University, 1982-85 and Professor in Physics, Strathclyde University, 1985-.
Research Interests: Transverse diffusion and diffraction in optical bistability, optical memory arrays,

instabilities in nonlinear optical systems, phase conjugation and four-wave mixing in Kerr media,3 bistability and instabilities in semiconductor laser amplifiers.

HERMANN FLASCHKA, 45, Ph.D. 1970, Massachusetts Institute of Technology. Professor, University
of Arizona, 1980-; Visiting Professor, Research Institute for Mathematical Sciences, Kyoto, Japan.
Research Interests- Nonlinear wave motion, dynamical systems, algebraic geometry and Lie theory
connected with dynamical systems.

BRENTON LE MESURIER, 31, Ph.D. 1986, New York University. Postdoctoral Research Associate,
Rensselaer Polytechnic Institute 1985-87; Assistant Professor, University of Arizona 1987-.
Research Interests- Singularities in nonlinear partial differential equations.

CHARLES DAVID LEVERMORE, 38, Ph.D. 1982, Courant Institute, New York University.
Mathematician Lawrence Livermore National Laboratory, 1982-1988; Associate Professor,
Mathematics, University of Arizona 1988-.
Research Interests- Nonlinear partial differential equations, computational mathematics, cellular
automata.

3 DAVID W. MC LAUGHLIN, 45, Ph.D. 1971, Indiana University. Chairman, Program in Applied
Mathematics, University of Arizona 1986-; Co-director of Arizona (AFOSR) Center of Mathematical
Sciences, 1986-; Associate Director (Acting), Center for the Study of Complex Systems, University of
Arizona, 1988-.
Research Interests. Mathematical physics, nonlinear waves, theoretical nonlinear optics, singularities in
nonlinear pde.
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I JEROME V. MOLONEY, 42, Ph.D. 1977, University of Western Ontario, Canada. Reader in Physics,
Heriot-Watt, 1988-. Regular long-term visitor of Mathematics, University of Arizona, 1984-.
Research Interests, Nonlinear optics, stability and propagation of nonlinear waves in planar waveguides,
transverse switching waves and solitary waves in optical bistability, instabilities and chaos in lasers.

ALAN C. NEWELL, 48, Ph. D. 1966, Massachusetts Institute of Technology. Chairman, Dept. Math.
Comp. Sci., Clarkson Univ. 1971-79; Chairman, Appl. Math. Prog., Univ. of Arizona 1981-85;
Chairman, Dept. of Math. 1985-. Guggenheim Fellow 1976-77. Humboldt Fellowship 1988-89.
Member and Chairman (1987-88), NSF Advising Board on Math. Sciences (1986-89), Member, Board
of Math. Sci. Nat. Acad. (1987-90).
Research Interests- Pattern Dynamics, Nonlinear Optics, Nonlinear Wave Propagation, Turbulence.

CHARLES M. NEWMAN, 44, Ph.D. 1971, Princeton University. Regular Faculty Positions: New York
University 1971-73; Indiana University 1973-79; University of Arizona 1979-. Visiting Positions:
NATO Postdoctoral Fellow, Technion 1975-76; Visiting Member, Courant Institute 1982; Lady Davis

Visiting Professor, Hebrew University 1983. Sloan Fellow 1978-81; Guggenheim Fellow 1984-85.3 Research Interests: Statistical mechanics, probability theory, mathematical biology.

YVES POMEAU, 48, Ph.D. 1967, Orsay University, France. Researcher Centre de la Recherche
Scientifique from 1965-, and directeur since 1983. Corresponding member of the French Academy of
Science in the division of Sciences Mechaniques. Consultant, Los Alamos National Laboratories.
Research Interests: Statistical physics, fluid mechanics, and dynamical systems.

DAVID RAND, 41, Ph.D. 1973, Southampton University, United Kingdom. Lecturer in Mathematics,
1978-80; Professor of Mathematics, Warwick University 1980-. Regular long-term visitor of
Mathematics, University of Arizona, 1984-.3Research Interests Dynamical systems, chaos and turbulence.

MACIEJ P. WOJTKOWSKI, 38, Ph.D. 1977, Moscow State University. Assistant Professor,
Mathematics Department, University of Arizona, 1985-88; Associate Professor, University of Arizona
1988-; Sloan Fellow 1987-89.
Research Interests- Dynamical systems.

LAI-SANG YOUNG, 38, Ph.D. 1978, University of California at Berkeley; Assistant Professor,
Northwestern University 1978-80; Visiting Lecturer, University of Warwick 1980-84; Assistant
Professor, Michigan State University 1980-84; Associate Professor, Uinversity of Arizona, 1986-; NSF
Visiting Professorship for Women in Science and Engineering 1982; fellowship at MSRI (Berkeley)
1983-84; Sloan Fellowship 1985-87.
Research Interests. Dynamical systems and smooth ergodic theory.

V. E. ZAKHAROV, 50, Ph.D. 1971, Novasibisk State University, USSR; Head, Plasma Theory Labs,
Novasibisk Institute of Nuclear Physics, 1967-74; Landau Institute for Theoretical Phys, Moscow,
1974-; Visiting Professor, Mathematics Department, University of Arizona, 1990-.
Research Interests: He has been involved in weak turbulence, optics (he solved the problem of coherent-
pulse propagation in an amplifier medium), solitons (he and Shabat were the first to solve the
nonlinear Schrodinger equation), singularities, field, theory, characterization of integrable systems,3 strong turbulence (he was one of the authors of the collapse theory for Langmuir turbulence).
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B - POST DOCTORALS AND STAFF

POST DOCTORAL

A. ACEVES, 32, Ph.D. 1988, Research Associate, Department of Mathematics, University of Arizona
1988-.3Research Interest-. Nonlinear optics, nonlinear wave phenomena, numerical computing.

D. J. BARSKY, 29, Ph.D. 1986, Rutgers University, New Brunswick, New Jersey. Research Associate,
Department of Mathematics, University of Arizona, 1987-.
Research Interest- Statistical mechanics, percolation and Ising models.

A. J. BERNOFF, 30, Ph.D. 1985, Applied Mathematics, Trinity College, University of Cambridge.
Research Associate, Department of Mathematics, University of Arizona 1986-.
Research Interests: Convection, waves in fluids.

P. DAMIANOU, 36, Ph.D. 1989, Research Associate, Department of Mathematics, University of
Arizona, 1989-.
Research Interests: Poisson structures.

3 W. M. HENRY, 28, Ph.D. 1988, Australian National University. Research Associate, Department of
Mathematics, University of Arizona 1988-.
Research Interests- Optics.

J. LEGA, 26, Ph.D. 1989, Universite de Nice. Research Associate, Department of Mathematics,
University of Arizona 1989-.
Research Interests: Physics of instabilities; numerical simulation of ODE's and PDE's; defects of
macroscopic structure; "•inzburg-Landau approach of instabilities in macroscopic systems and pattern
formation.

T. PASSOT, 30, Ph.D. 1987, Nice Observatory, France. Research Associate, University of Arizona
1988-.
Research Interest- Turbulence, convection patterns, compressible flows, self gravitation, numerical3 simulations, Painleve analysis.

M. SOULI, 34, Ph.D. 1984, University of Nice, France. Research Associate, University of Arizona
1988-.
Research Interests- Computational science, nonlinear optics, convection patterns.

STAFF

R. INDIK, 33, Ph.D. 1982, Princeton University. Assistant Professor, Brandeis University 1982-86.
Computer Software Specialist, Mathematics Department, University of Arizona 1987-.3 Research Interest- Nonlinear optics, number theory, algebraic geometry.

R. CONDON, 37, BA 1973, Harvard College. Computing Manager Department of Mathematics,
University of Arizona 1986-.
Research Interest Distributed processing systems, concurrent programming languages.
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I VI. GRADUATE STUDENT PROJECTS AND BIOGRAPHIES

3 A. ACEVES, B.S. 1981, Universidad Nacional Autonoma de Mexico; M.S. 1983, California Institute of
Technology. Ph.D. 1988, University of Arizona. In the past 2 years, developed with J. V. Moloney
and A. C. Newell a theory which describes the global reflection and transmission characteristics of
beams propagating in nonlinear dielectric media with one or more interfaces. The main result is that
the theory provides the nonlinear Snell's laws of reflection and transmission at an interface in a very
simple way. These laws are obtained from an equivalent particle description of the beam.

R. ACEVES - B.S. 1981, Universidad Nacional Autonoma de Mexico. Ph.D. student in Applied
Mathematics. Enrolled in 1984. Coherent pulse propagation in an inhomogeneously broadened
medium is an exactly solvable model of wave propagation in a random medium in which an initial
pulse decomposes into its soliton (coherent) and radiation (phonon) components. The latter is trapped
in a localization distance; the former propagates without loss. It is our idea that this sort of
decomposition is relevant to many systems in which there is a competition between the coherence of
nonlinear wavepackets and the scattering of the random medium. We plan to exploit variations of the
exactly solvable model. Advisor: A. C. Newell.

H. ADACHIHARA - B.S. 1983, Northern Michigan University. Marquette, Michigan. Ph.D. student in
Applied Mathematics. Enrolled in 1983, Ph.D. 1988, University of Arizona. Worked on the circulation

of a laser beam in a passive optical ring cavity. Found that the transverse beam profile undergoes a

sequence of modulational instabilities leading to ring and filament structures that occur in a random3 fashion. Advisors: D. W. McLaughlin and A. C. Newell.

P. DAMIANOU - B.S. 1977, University of New Hampshire. M.A. 1988, University of California, Los
Angeles, California. Ph.D. 1989, University of Arizona. Enrolled in 1985. Working on multiple
Poisson structures for the Toda lattice, and on Poisson structures transverse to orbits in semi simple
Lie algebras. Advisor: H. Flaschka.

3 L. FAHLERG - B.S. 1975 and M.S. 1980, University of Kiril and Metodij, Yugoslavia. Ph.D. student
in Mathematics. Enrolled in 1987. Started working on small random perturbations and asymptotic
distributions for the Lorenz attractors. Advisor: L. Young.

I P. JAKOBSEN - B.S. 1984, M.S. 1986, University of Tromso, Norway; Ph.D. student in Applied
Mathematics. Enrolled in 1987. Working on study of stability, dynamics and bifurcation of externally
driven and undriven arrays of diode lasers, as well as study of the linear stability of homogeneous
solutions describing almost monochromatic plane waves propagating in a laser cavity. Advisor: A. C.
Newell.

S. JIN - B.S. 1982 and M.S. 1986, Fudan University, Shanghai China. Ph.D. student in Applied

Mathematics. Enrolled in 1987. Studying the semiclassical limit for solutions of nonlinear Schrodinger
equations emphasizing the development and propagation of singularitis. Advisor: D. W. McLaughlin.

I C. LIZARRAGA - B.S. 1978, Universidad de Sonora, Mexico; M.S. 1980 Universidad de Mexico. Ph.D.
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